subroutine run_stochastic_cipsi use selection_types implicit none BEGIN_DOC ! Selected Full Configuration Interaction with Stochastic selection and PT2. END_DOC integer :: i,j,k double precision, allocatable :: zeros(:) integer :: to_select type(pt2_type) :: pt2_data, pt2_data_err logical, external :: qp_stop double precision :: rss double precision, external :: memory_of_double PROVIDE H_apply_buffer_allocated distributed_davidson mo_two_e_integrals_in_map N_iter = 1 threshold_generators = 1.d0 SOFT_TOUCH threshold_generators rss = memory_of_double(N_states)*4.d0 call check_mem(rss,irp_here) allocate (zeros(N_states)) call pt2_alloc(pt2_data, N_states) call pt2_alloc(pt2_data_err, N_states) double precision :: hf_energy_ref logical :: has double precision :: relative_error relative_error=PT2_relative_error zeros = 0.d0 pt2_data % pt2 = -huge(1.e0) pt2_data % rpt2 = -huge(1.e0) pt2_data % overlap= 0.d0 pt2_data % variance = huge(1.e0) if (s2_eig) then call make_s2_eigenfunction endif call diagonalize_CI call save_wavefunction call ezfio_has_hartree_fock_energy(has) if (has) then call ezfio_get_hartree_fock_energy(hf_energy_ref) else hf_energy_ref = ref_bitmask_energy endif if (N_det > N_det_max) then psi_det = psi_det_sorted psi_coef = psi_coef_sorted N_det = N_det_max soft_touch N_det psi_det psi_coef if (s2_eig) then call make_s2_eigenfunction endif call diagonalize_CI call save_wavefunction endif double precision :: correlation_energy_ratio correlation_energy_ratio = 0.d0 do while ( & (N_det < N_det_max) .and. & (maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. & (maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. & (correlation_energy_ratio <= correlation_energy_ratio_max) & ) write(*,'(A)') '--------------------------------------------------------------------------------' to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor) to_select = max(N_states_diag, to_select) call pt2_dealloc(pt2_data) call pt2_dealloc(pt2_data_err) call pt2_alloc(pt2_data, N_states) call pt2_alloc(pt2_data_err, N_states) call ZMQ_pt2(psi_energy_with_nucl_rep,pt2_data,pt2_data_err,relative_error,to_select) ! Stochastic PT2 and selection correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / & (psi_energy_with_nucl_rep(1) + pt2_data % rpt2(1) - hf_energy_ref) correlation_energy_ratio = min(1.d0,correlation_energy_ratio) call write_double(6,correlation_energy_ratio, 'Correlation ratio') call print_summary(psi_energy_with_nucl_rep, & pt2_data, pt2_data_err, N_det,N_configuration,N_states,psi_s2) call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2) call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det) call print_extrapolated_energy() call print_mol_properties() N_iter += 1 if (qp_stop()) exit ! Add selected determinants call copy_H_apply_buffer_to_wf() if (save_wf_after_selection) then call save_wavefunction endif PROVIDE psi_coef PROVIDE psi_det PROVIDE psi_det_sorted call diagonalize_CI call save_wavefunction call save_energy(psi_energy_with_nucl_rep, zeros) if (qp_stop()) exit enddo ! If stopped because N_det > N_det_max, do an extra iteration to compute the PT2 if ((.not.qp_stop()).and. & (N_det > N_det_max) .and. & (maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. & (maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and.& (correlation_energy_ratio <= correlation_energy_ratio_max) & ) then call pt2_dealloc(pt2_data) call pt2_dealloc(pt2_data_err) call pt2_alloc(pt2_data, N_states) call pt2_alloc(pt2_data_err, N_states) call ZMQ_pt2(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, relative_error, 0) ! Stochastic PT2 call save_energy(psi_energy_with_nucl_rep, pt2_data % pt2) call print_summary(psi_energy_with_nucl_rep, & pt2_data , pt2_data_err, N_det, N_configuration, N_states, psi_s2) call save_iterations(psi_energy_with_nucl_rep(1:N_states),pt2_data % rpt2,N_det) call print_extrapolated_energy() call print_mol_properties() endif call pt2_dealloc(pt2_data) call pt2_dealloc(pt2_data_err) end