subroutine run_stochastic_cipsi implicit none BEGIN_DOC ! Selected Full Configuration Interaction with Stochastic selection and PT2. END_DOC integer :: i,j,k double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:) integer :: to_select logical, external :: qp_stop double precision :: rss double precision, external :: memory_of_double PROVIDE H_apply_buffer_allocated N_iter = 1 threshold_generators = 1.d0 SOFT_TOUCH threshold_generators rss = memory_of_double(N_states)*4.d0 call check_mem(rss,irp_here) allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states)) double precision :: hf_energy_ref logical :: has double precision :: relative_error relative_error=PT2_relative_error zeros = 0.d0 pt2 = -huge(1.e0) rpt2 = -huge(1.e0) norm = 0.d0 variance = huge(1.e0) if (s2_eig) then call make_s2_eigenfunction endif if (is_complex) then call diagonalize_ci_complex else call diagonalize_ci endif call save_wavefunction call ezfio_has_hartree_fock_energy(has) if (has) then call ezfio_get_hartree_fock_energy(hf_energy_ref) else hf_energy_ref = ref_bitmask_energy_with_nucl_rep endif if (N_det > N_det_max) then psi_det = psi_det_sorted if (is_complex) then psi_coef_complex = psi_coef_sorted_complex N_det = N_det_max soft_touch N_det psi_det psi_coef_complex else psi_coef = psi_coef_sorted N_det = N_det_max soft_touch N_det psi_det psi_coef endif if (s2_eig) then call make_s2_eigenfunction endif if (is_complex) then call diagonalize_ci_complex else call diagonalize_CI endif call save_wavefunction endif double precision :: correlation_energy_ratio double precision :: error(N_states) correlation_energy_ratio = 0.d0 do while ( & (N_det < N_det_max) .and. & (maxval(abs(rpt2(1:N_states))) > pt2_max) .and. & (maxval(abs(variance(1:N_states))) > variance_max) .and. & (correlation_energy_ratio <= correlation_energy_ratio_max) & ) write(*,'(A)') '--------------------------------------------------------------------------------' to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor) to_select = max(N_states_diag, to_select) pt2 = 0.d0 variance = 0.d0 norm = 0.d0 ! if (is_complex) then ! call zmq_pt2_complex(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & ! norm, to_select) ! Stochastic PT2 and selection ! else call zmq_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & norm, to_select) ! Stochastic PT2 and selection ! endif do k=1,N_states rpt2(k) = pt2(k)/(1.d0 + norm(k)) enddo correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / & (psi_energy_with_nucl_rep(1) + rpt2(1) - hf_energy_ref) correlation_energy_ratio = min(1.d0,correlation_energy_ratio) call write_double(6,correlation_energy_ratio, 'Correlation ratio') call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2) !call print_debug_fci() call save_energy(psi_energy_with_nucl_rep, rpt2) call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det) call print_extrapolated_energy() N_iter += 1 if (qp_stop()) exit ! Add selected determinants call copy_h_apply_buffer_to_wf() ! call save_wavefunction if (is_complex) then PROVIDE psi_coef_complex else PROVIDE psi_coef endif PROVIDE psi_det PROVIDE psi_det_sorted if (is_complex) then call diagonalize_ci_complex else call diagonalize_CI endif call save_wavefunction call save_energy(psi_energy_with_nucl_rep, zeros) if (qp_stop()) exit enddo if (.not.qp_stop()) then if (N_det < N_det_max) then if (is_complex) then call diagonalize_ci_complex else call diagonalize_CI endif call save_wavefunction call save_energy(psi_energy_with_nucl_rep, zeros) endif pt2(:) = 0.d0 variance(:) = 0.d0 norm(:) = 0.d0 ! if (is_complex) then ! call zmq_pt2_complex(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & ! norm,0) ! Stochastic PT2 ! else call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & norm,0) ! Stochastic PT2 ! endif do k=1,N_states rpt2(k) = pt2(k)/(1.d0 + norm(k)) enddo call save_energy(psi_energy_with_nucl_rep, rpt2) call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2) call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det) call print_extrapolated_energy() endif end