.. _module_ao_two_e_ints: .. program:: ao_two_e_ints .. default-role:: option ================== ao_two_e_ints ================== Here, all two-electron integrals (:math:`1/r_{12}`) are computed. As they have 4 indices and many are zero, they are stored in a map, as defined in :file:`utils/map_module.f90`. To fetch an |AO| integral, use the `get_ao_two_e_integral(i,j,k,l,ao_integrals_map)` function. The conventions are: * For |AO| integrals : (ij|kl) = (11|22) = <ik|jl> = <12|12> EZFIO parameters ---------------- .. option:: io_ao_two_e_integrals Read/Write |AO| integrals from/to disk [ Write | Read | None ] Default: None .. option:: ao_integrals_threshold If | (pq|rs) | < `ao_integrals_threshold` then (pq|rs) is zero Default: 1.e-15 .. option:: do_direct_integrals Compute integrals on the fly (very slow, only for debugging) Default: False Providers --------- .. c:var:: ao_integrals_cache File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran double precision, allocatable :: ao_integrals_cache (0:64*64*64*64) Cache of AO integrals for fast access Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_cache_min` * :c:data:`ao_integrals_map` * :c:data:`ao_two_e_integrals_in_map` .. c:var:: ao_integrals_cache_max File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran integer :: ao_integrals_cache_min integer :: ao_integrals_cache_max Min and max values of the AOs for which the integrals are in the cache Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` Needed by: .. hlist:: :columns: 3 * :c:data:`ao_integrals_cache` .. c:var:: ao_integrals_cache_min File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran integer :: ao_integrals_cache_min integer :: ao_integrals_cache_max Min and max values of the AOs for which the integrals are in the cache Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` Needed by: .. hlist:: :columns: 3 * :c:data:`ao_integrals_cache` .. c:var:: ao_integrals_map File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran type(map_type) :: ao_integrals_map AO integrals Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` Needed by: .. hlist:: :columns: 3 * :c:data:`ao_integrals_cache` * :c:data:`ao_two_e_integral_alpha` * :c:data:`ao_two_e_integrals_in_map` * :c:data:`mo_two_e_integral_jj_from_ao` * :c:data:`mo_two_e_integrals_vv_from_ao` .. c:var:: ao_two_e_integral_schwartz File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran double precision, allocatable :: ao_two_e_integral_schwartz (ao_num,ao_num) Needed to compute Schwartz inequalities Needs: .. hlist:: :columns: 3 * :c:data:`ao_coef_normalized_ordered_transp` * :c:data:`ao_expo_ordered_transp` * :c:data:`ao_nucl` * :c:data:`ao_num` * :c:data:`ao_power` * :c:data:`ao_prim_num` * :c:data:`n_pt_max_integrals` * :c:data:`nucl_coord` Needed by: .. hlist:: :columns: 3 * :c:data:`ao_two_e_integral_alpha` * :c:data:`mo_two_e_integral_jj_from_ao` * :c:data:`mo_two_e_integrals_vv_from_ao` .. c:var:: ao_two_e_integrals_in_map File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran logical :: ao_two_e_integrals_in_map Map of Atomic integrals i(r1) j(r2) 1/r12 k(r1) l(r2) Needs: .. hlist:: :columns: 3 * :c:data:`ao_coef_normalized_ordered_transp` * :c:data:`ao_expo_ordered_transp` * :c:data:`ao_integrals_map` * :c:data:`ao_nucl` * :c:data:`ao_num` * :c:data:`ao_power` * :c:data:`ao_prim_num` * :c:data:`ezfio_filename` * :c:data:`io_ao_two_e_integrals` * :c:data:`mpi_master` * :c:data:`n_pt_max_integrals` * :c:data:`nproc` * :c:data:`nucl_coord` * :c:data:`read_ao_two_e_integrals` * :c:data:`zmq_context` * :c:data:`zmq_socket_pull_tcp_address` * :c:data:`zmq_state` Needed by: .. hlist:: :columns: 3 * :c:data:`ao_integrals_cache` * :c:data:`ao_two_e_integral_alpha` * :c:data:`mo_two_e_integral_jj_from_ao` * :c:data:`mo_two_e_integrals_erf_in_map` * :c:data:`mo_two_e_integrals_in_map` * :c:data:`mo_two_e_integrals_vv_from_ao` .. c:var:: gauleg_t2 File : :file:`ao_two_e_ints/gauss_legendre.irp.f` .. code:: fortran double precision, allocatable :: gauleg_t2 (n_pt_max_integrals,n_pt_max_integrals/2) double precision, allocatable :: gauleg_w (n_pt_max_integrals,n_pt_max_integrals/2) t_w(i,1,k) = w(i) t_w(i,2,k) = t(i) Needs: .. hlist:: :columns: 3 * :c:data:`n_pt_max_integrals` .. c:var:: gauleg_w File : :file:`ao_two_e_ints/gauss_legendre.irp.f` .. code:: fortran double precision, allocatable :: gauleg_t2 (n_pt_max_integrals,n_pt_max_integrals/2) double precision, allocatable :: gauleg_w (n_pt_max_integrals,n_pt_max_integrals/2) t_w(i,1,k) = w(i) t_w(i,2,k) = t(i) Needs: .. hlist:: :columns: 3 * :c:data:`n_pt_max_integrals` .. c:function:: general_primitive_integral: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran double precision function general_primitive_integral(dim, & P_new,P_center,fact_p,p,p_inv,iorder_p, & Q_new,Q_center,fact_q,q,q_inv,iorder_q) Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives Calls: .. hlist:: :columns: 3 * :c:func:`add_poly_multiply` * :c:func:`give_polynom_mult_center_x` * :c:func:`multiply_poly` .. c:function:: i_x1_new: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran recursive subroutine I_x1_new(a,c,B_10,B_01,B_00,res,n_pt) recursive function involved in the two-electron integral Needs: .. hlist:: :columns: 3 * :c:data:`n_pt_max_integrals` Called by: .. hlist:: :columns: 3 * :c:func:`i_x1_new` * :c:func:`i_x2_new` * :c:func:`integrale_new` * :c:func:`integrale_new_erf` Calls: .. hlist:: :columns: 3 * :c:func:`i_x1_new` * :c:func:`i_x2_new` .. c:function:: i_x1_pol_mult_a1: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) Recursive function involved in the two-electron integral Called by: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult` * :c:func:`i_x1_pol_mult_a2` * :c:func:`i_x1_pol_mult_recurs` Calls: .. hlist:: :columns: 3 * :c:func:`i_x2_pol_mult` * :c:func:`multiply_poly` .. c:function:: i_x1_pol_mult_a2: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) Recursive function involved in the two-electron integral Called by: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult` * :c:func:`i_x1_pol_mult_recurs` Calls: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult_a1` * :c:func:`i_x2_pol_mult` * :c:func:`multiply_poly` .. c:function:: i_x1_pol_mult_recurs: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) Recursive function involved in the two-electron integral Called by: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult` * :c:func:`i_x1_pol_mult_recurs` Calls: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult_a1` * :c:func:`i_x1_pol_mult_a2` * :c:func:`i_x1_pol_mult_recurs` * :c:func:`multiply_poly` .. c:function:: i_x2_new: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran recursive subroutine I_x2_new(c,B_10,B_01,B_00,res,n_pt) recursive function involved in the two-electron integral Needs: .. hlist:: :columns: 3 * :c:data:`n_pt_max_integrals` Called by: .. hlist:: :columns: 3 * :c:func:`i_x1_new` Calls: .. hlist:: :columns: 3 * :c:func:`i_x1_new` .. c:function:: i_x2_pol_mult: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim) Recursive function involved in the two-electron integral Called by: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult` * :c:func:`i_x1_pol_mult_a1` * :c:func:`i_x1_pol_mult_a2` * :c:func:`i_x2_pol_mult` Calls: .. hlist:: :columns: 3 * :c:func:`i_x2_pol_mult` * :c:func:`multiply_poly` Subroutines / functions ----------------------- .. c:function:: ao_l4: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran integer function ao_l4(i,j,k,l) Computes the product of l values of i,j,k,and l Needs: .. hlist:: :columns: 3 * :c:data:`ao_l` .. c:function:: ao_two_e_integral: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran double precision function ao_two_e_integral(i,j,k,l) integral of the AO basis <ik|jl> or (ij|kl) i(r1) j(r1) 1/r12 k(r2) l(r2) Needs: .. hlist:: :columns: 3 * :c:data:`n_pt_max_integrals` * :c:data:`ao_coef_normalized_ordered_transp` * :c:data:`ao_power` * :c:data:`ao_expo_ordered_transp` * :c:data:`ao_prim_num` * :c:data:`ao_nucl` * :c:data:`nucl_coord` Calls: .. hlist:: :columns: 3 * :c:func:`give_explicit_poly_and_gaussian` .. c:function:: ao_two_e_integral_schwartz_accel: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran double precision function ao_two_e_integral_schwartz_accel(i,j,k,l) integral of the AO basis <ik|jl> or (ij|kl) i(r1) j(r1) 1/r12 k(r2) l(r2) Needs: .. hlist:: :columns: 3 * :c:data:`n_pt_max_integrals` * :c:data:`ao_integrals_threshold` * :c:data:`ao_coef_normalized_ordered_transp` * :c:data:`ao_power` * :c:data:`ao_expo_ordered_transp` * :c:data:`ao_prim_num` * :c:data:`ao_nucl` * :c:data:`nucl_coord` Calls: .. hlist:: :columns: 3 * :c:func:`give_explicit_poly_and_gaussian` .. c:function:: ao_two_e_integrals_in_map_collector: File : :file:`ao_two_e_ints/integrals_in_map_slave.irp.f` .. code:: fortran subroutine ao_two_e_integrals_in_map_collector(zmq_socket_pull) Collects results from the AO integral calculation Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` * :c:data:`ao_num` Called by: .. hlist:: :columns: 3 * :c:data:`ao_two_e_integrals_in_map` Calls: .. hlist:: :columns: 3 * :c:func:`end_zmq_to_qp_run_socket` * :c:func:`insert_into_ao_integrals_map` .. c:function:: ao_two_e_integrals_in_map_slave: File : :file:`ao_two_e_ints/integrals_in_map_slave.irp.f` .. code:: fortran subroutine ao_two_e_integrals_in_map_slave(thread,iproc) Computes a buffer of integrals Needs: .. hlist:: :columns: 3 * :c:data:`ao_num` Called by: .. hlist:: :columns: 3 * :c:func:`ao_two_e_integrals_in_map_slave_inproc` * :c:func:`ao_two_e_integrals_in_map_slave_tcp` Calls: .. hlist:: :columns: 3 * :c:func:`compute_ao_integrals_jl` * :c:func:`end_zmq_push_socket` * :c:func:`end_zmq_to_qp_run_socket` * :c:func:`push_integrals` .. c:function:: ao_two_e_integrals_in_map_slave_inproc: File : :file:`ao_two_e_ints/integrals_in_map_slave.irp.f` .. code:: fortran subroutine ao_two_e_integrals_in_map_slave_inproc(i) Computes a buffer of integrals. i is the ID of the current thread. Called by: .. hlist:: :columns: 3 * :c:data:`ao_two_e_integrals_in_map` Calls: .. hlist:: :columns: 3 * :c:func:`ao_two_e_integrals_in_map_slave` .. c:function:: ao_two_e_integrals_in_map_slave_tcp: File : :file:`ao_two_e_ints/integrals_in_map_slave.irp.f` .. code:: fortran subroutine ao_two_e_integrals_in_map_slave_tcp(i) Computes a buffer of integrals. i is the ID of the current thread. Calls: .. hlist:: :columns: 3 * :c:func:`ao_two_e_integrals_in_map_slave` .. c:function:: clear_ao_map: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine clear_ao_map Frees the memory of the AO map Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` Calls: .. hlist:: :columns: 3 * :c:func:`map_deinit` .. c:function:: compute_ao_integrals_jl: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value) Parallel client for AO integrals Needs: .. hlist:: :columns: 3 * :c:data:`ao_overlap_abs` * :c:data:`ao_num` * :c:data:`ao_integrals_threshold` * :c:data:`ao_two_e_integral_schwartz` Called by: .. hlist:: :columns: 3 * :c:func:`ao_two_e_integrals_in_map_slave` Calls: .. hlist:: :columns: 3 * :c:func:`two_e_integrals_index` .. c:function:: compute_ao_two_e_integrals: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran subroutine compute_ao_two_e_integrals(j,k,l,sze,buffer_value) Compute AO 1/r12 integrals for all i and fixed j,k,l Needs: .. hlist:: :columns: 3 * :c:data:`ao_overlap_abs` * :c:data:`ao_num` * :c:data:`ao_two_e_integral_schwartz` Called by: .. hlist:: :columns: 3 * :c:data:`mo_two_e_integral_jj_from_ao` * :c:data:`mo_two_e_integrals_vv_from_ao` .. c:function:: dump_ao_integrals: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine dump_ao_integrals(filename) Save to disk the |AO| integrals Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` * :c:data:`mpi_master` Calls: .. hlist:: :columns: 3 * :c:func:`ezfio_set_work_empty` .. c:function:: eri: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran double precision function ERI(alpha,beta,delta,gama,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z) ATOMIC PRIMTIVE two-electron integral between the 4 primitives :: primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2) primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2) primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2) primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2) Calls: .. hlist:: :columns: 3 * :c:func:`integrale_new` .. c:function:: gauleg: File : :file:`ao_two_e_ints/gauss_legendre.irp.f` .. code:: fortran subroutine gauleg(x1,x2,x,w,n) Gauss-Legendre Called by: .. hlist:: :columns: 3 * :c:data:`gauleg_t2` .. c:function:: get_ao_map_size: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran function get_ao_map_size() Returns the number of elements in the AO map Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` .. c:function:: get_ao_two_e_integral: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran double precision function get_ao_two_e_integral(i,j,k,l,map) result(result) Gets one AO bi-electronic integral from the AO map Needs: .. hlist:: :columns: 3 * :c:data:`ao_overlap_abs` * :c:data:`ao_integrals_threshold` * :c:data:`ao_two_e_integral_schwartz` * :c:data:`ao_integrals_cache` * :c:data:`ao_integrals_cache_min` * :c:data:`ao_two_e_integrals_in_map` Calls: .. hlist:: :columns: 3 * :c:func:`map_get` * :c:func:`two_e_integrals_index` .. c:function:: get_ao_two_e_integrals: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine get_ao_two_e_integrals(j,k,l,sze,out_val) Gets multiple AO bi-electronic integral from the AO map . All i are retrieved for j,k,l fixed. physicist convention : <ij|kl> Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` * :c:data:`ao_overlap_abs` * :c:data:`ao_integrals_threshold` * :c:data:`ao_two_e_integrals_in_map` Called by: .. hlist:: :columns: 3 * :c:func:`add_integrals_to_map` * :c:func:`add_integrals_to_map_no_exit_34` * :c:func:`add_integrals_to_map_three_indices` .. c:function:: get_ao_two_e_integrals_non_zero: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int) Gets multiple AO bi-electronic integral from the AO map . All non-zero i are retrieved for j,k,l fixed. Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` * :c:data:`ao_overlap_abs` * :c:data:`ao_integrals_threshold` * :c:data:`ao_two_e_integral_schwartz` * :c:data:`ao_two_e_integrals_in_map` Called by: .. hlist:: :columns: 3 * :c:data:`mo_two_e_integral_jj_from_ao` * :c:data:`mo_two_e_integrals_vv_from_ao` Calls: .. hlist:: :columns: 3 * :c:func:`map_get` * :c:func:`two_e_integrals_index` .. c:function:: get_ao_two_e_integrals_non_zero_jl: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine get_ao_two_e_integrals_non_zero_jl(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int) Gets multiple AO bi-electronic integral from the AO map . All non-zero i are retrieved for j,k,l fixed. Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` * :c:data:`ao_overlap_abs` * :c:data:`ao_two_e_integral_schwartz` * :c:data:`ao_two_e_integrals_in_map` Calls: .. hlist:: :columns: 3 * :c:func:`map_get` * :c:func:`two_e_integrals_index` .. c:function:: get_ao_two_e_integrals_non_zero_jl_from_list: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine get_ao_two_e_integrals_non_zero_jl_from_list(j,l,thresh,list,n_list,sze_max,out_val,out_val_index,non_zero_int) Gets multiple AO two-electron integrals from the AO map . All non-zero i are retrieved for j,k,l fixed. Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` * :c:data:`ao_overlap_abs` * :c:data:`ao_two_e_integral_schwartz` * :c:data:`ao_two_e_integrals_in_map` Calls: .. hlist:: :columns: 3 * :c:func:`map_get` * :c:func:`two_e_integrals_index` .. c:function:: give_polynom_mult_center_x: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran subroutine give_polynom_mult_center_x(P_center,Q_center,a_x,d_x,p,q,n_pt_in,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,d,n_pt_out) subroutine that returns the explicit polynom in term of the "t" variable of the following polynomw : $I_{x_1}(a_x,d_x,p,q) \, I_{x_1}(a_y,d_y,p,q) \ I_{x_1}(a_z,d_z,p,q)$ Called by: .. hlist:: :columns: 3 * :c:func:`general_primitive_integral` * :c:func:`general_primitive_integral_erf` Calls: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult` .. c:function:: i_x1_pol_mult: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran subroutine I_x1_pol_mult(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) Recursive function involved in the two-electron integral Called by: .. hlist:: :columns: 3 * :c:func:`give_polynom_mult_center_x` Calls: .. hlist:: :columns: 3 * :c:func:`i_x1_pol_mult_a1` * :c:func:`i_x1_pol_mult_a2` * :c:func:`i_x1_pol_mult_recurs` * :c:func:`i_x2_pol_mult` .. c:function:: insert_into_ao_integrals_map: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values) Create new entry into AO map Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` Called by: .. hlist:: :columns: 3 * :c:func:`ao_two_e_integrals_in_map_collector` Calls: .. hlist:: :columns: 3 * :c:func:`map_append` .. c:function:: integrale_new: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran subroutine integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt) Calculates the integral of the polynomial : $I_{x_1}(a_x+b_x,c_x+d_x,p,q) \, I_{x_1}(a_y+b_y,c_y+d_y,p,q) \, I_{x_1}(a_z+b_z,c_z+d_z,p,q)$ in $( 0 ; 1)$ Needs: .. hlist:: :columns: 3 * :c:data:`n_pt_max_integrals` * :c:data:`gauleg_t2` Called by: .. hlist:: :columns: 3 * :c:func:`eri` Calls: .. hlist:: :columns: 3 * :c:func:`i_x1_new` .. c:function:: load_ao_integrals: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran integer function load_ao_integrals(filename) Read from disk the |AO| integrals Needs: .. hlist:: :columns: 3 * :c:data:`ao_integrals_map` Calls: .. hlist:: :columns: 3 * :c:func:`cache_map_reallocate` * :c:func:`map_deinit` * :c:func:`map_sort` .. c:function:: n_pt_sup: File : :file:`ao_two_e_ints/two_e_integrals.irp.f` .. code:: fortran integer function n_pt_sup(a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z) Returns the upper boundary of the degree of the polynomial involved in the two-electron integral : $I_x(a_x,b_x,c_x,d_x) \, I_y(a_y,b_y,c_y,d_y) \, I_z(a_z,b_z,c_z,d_z)$ .. c:function:: push_integrals: File : :file:`ao_two_e_ints/integrals_in_map_slave.irp.f` .. code:: fortran subroutine push_integrals(zmq_socket_push, n_integrals, buffer_i, buffer_value, task_id) Push integrals in the push socket Called by: .. hlist:: :columns: 3 * :c:func:`ao_two_e_integrals_erf_in_map_slave` * :c:func:`ao_two_e_integrals_in_map_slave` .. c:function:: two_e_integrals_index: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine two_e_integrals_index(i,j,k,l,i1) Gives a unique index for i,j,k,l using permtuation symmetry. i <-> k, j <-> l, and (i,k) <-> (j,l) Called by: .. hlist:: :columns: 3 * :c:data:`ao_integrals_cache` * :c:data:`ao_integrals_erf_cache` * :c:data:`ao_integrals_erf_map` * :c:data:`ao_integrals_map` * :c:func:`compute_ao_integrals_erf_jl` * :c:func:`compute_ao_integrals_jl` * :c:func:`get_ao_two_e_integral` * :c:func:`get_ao_two_e_integral_erf` * :c:func:`get_ao_two_e_integrals_erf_non_zero` * :c:func:`get_ao_two_e_integrals_non_zero` * :c:func:`get_ao_two_e_integrals_non_zero_jl` * :c:func:`get_ao_two_e_integrals_non_zero_jl_from_list` * :c:func:`get_mo_two_e_integral_erf` * :c:func:`get_mo_two_e_integrals_coulomb_ii` * :c:func:`get_mo_two_e_integrals_erf` * :c:func:`get_mo_two_e_integrals_erf_coulomb_ii` * :c:func:`get_mo_two_e_integrals_erf_exch_ii` * :c:func:`get_mo_two_e_integrals_erf_i1j1` * :c:func:`get_mo_two_e_integrals_erf_ij` * :c:func:`get_mo_two_e_integrals_exch_ii` * :c:func:`get_mo_two_e_integrals_i1j1` * :c:func:`get_mo_two_e_integrals_ij` * :c:func:`get_two_e_integral` * :c:data:`mo_integrals_cache` * :c:data:`mo_integrals_erf_cache` * :c:data:`mo_integrals_erf_map` * :c:data:`mo_integrals_map` * :c:func:`test` .. c:function:: two_e_integrals_index_reverse: File : :file:`ao_two_e_ints/map_integrals.irp.f` .. code:: fortran subroutine two_e_integrals_index_reverse(i,j,k,l,i1) Computes the 4 indices $i,j,k,l$ from a unique index $i_1$. For 2 indices $i,j$ and $i \le j$, we have $p = i(i-1)/2 + j$. The key point is that because $j < i$, $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$ and $j = p - i(i-1)/2$. This rule is applied 3 times. First for the symmetry of the pairs (i,k) and (j,l), and then for the symmetry within each pair. Called by: .. hlist:: :columns: 3 * :c:data:`ao_two_e_integral_alpha` * :c:func:`test`