double precision function derf_mu_x(mu,x) implicit none include 'utils/constants.include.F' double precision, intent(in) :: mu,x if(dabs(x).gt.1.d-6)then derf_mu_x = derf(mu * x)/x else derf_mu_x = inv_sq_pi * 2.d0 * mu * (1.d0 - mu*mu*x*x/3.d0) endif end double precision function binom_func(i,j) implicit none BEGIN_DOC !.. math :: ! ! \frac{i!}{j!(i-j)!} ! END_DOC integer,intent(in) :: i,j double precision :: logfact integer, save :: ifirst double precision, save :: memo(0:15,0:15) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: memo integer :: k,l if (ifirst == 0) then ifirst = 1 do k=0,15 do l=0,15 memo(k,l) = dexp( logfact(k)-logfact(l)-logfact(k-l) ) enddo enddo endif if ( (i<=15).and.(j<=15) ) then binom_func = memo(i,j) else binom_func = dexp( logfact(i)-logfact(j)-logfact(i-j) ) endif ! To avoid .999999 numbers binom_func = floor(binom_func + 0.5d0) end BEGIN_PROVIDER [ double precision, binom, (0:40,0:40) ] &BEGIN_PROVIDER [ double precision, binom_transp, (0:40,0:40) ] implicit none BEGIN_DOC ! Binomial coefficients END_DOC integer :: k,l double precision :: logfact do k=0,40 do l=0,40 binom(k,l) = dexp( logfact(k)-logfact(l)-logfact(k-l) ) binom_transp(l,k) = binom(k,l) enddo enddo END_PROVIDER BEGIN_PROVIDER [ integer*8, binom_int, (0:40,0:40) ] &BEGIN_PROVIDER [ integer*8, binom_int_transp, (0:40,0:40) ] implicit none BEGIN_DOC ! Binomial coefficients, as integers*8 END_DOC integer :: k,l double precision :: logfact do l=0,40 do k=0,40 binom_int(k,l) = int(binom(k,l)+0.1d0,8) enddo enddo END_PROVIDER double precision function fact(n) implicit none BEGIN_DOC ! n! END_DOC integer :: n double precision, save :: memo(1:100) integer, save :: memomax = 1 if (n<=memomax) then if (n<2) then fact = 1.d0 else fact = memo(n) endif return endif integer :: i memo(1) = 1.d0 do i=memomax+1,min(n,100) memo(i) = memo(i-1)*dble(i) enddo memomax = min(n,100) double precision :: logfact fact = dexp(logfact(n)) end function double precision function logfact(n) implicit none BEGIN_DOC ! n! END_DOC integer :: n double precision, save :: memo(1:100) integer, save :: memomax = 1 if (n<=memomax) then if (n<2) then logfact = 0.d0 else logfact = memo(n) endif return endif integer :: i memo(1) = 0.d0 do i=memomax+1,min(n,100) memo(i) = memo(i-1)+dlog(dble(i)) enddo memomax = min(n,100) logfact = memo(memomax) do i=101,n logfact += dlog(dble(i)) enddo end function ! --- BEGIN_PROVIDER [ double precision, fact_inv, (128) ] implicit none BEGIN_DOC ! 1/n! END_DOC integer :: i double precision :: fact do i=1,size(fact_inv) fact_inv(i) = 1.d0/fact(i) enddo END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, shiftfact_op5_inv, (128) ] BEGIN_DOC ! ! 1 / Gamma(n + 0.5) ! END_DOC implicit none integer :: i double precision :: tmp do i = 1, size(shiftfact_op5_inv) !tmp = dgamma(dble(i) + 0.5d0) tmp = gamma(dble(i) + 0.5d0) shiftfact_op5_inv(i) = 1.d0 / tmp enddo END_PROVIDER ! --- double precision function dble_fact(n) implicit none integer :: n double precision :: dble_fact_even, dble_fact_odd dble_fact = 1.d0 if(n.lt.0) return if(iand(n,1).eq.0)then dble_fact = dble_fact_even(n) else dble_fact= dble_fact_odd(n) endif end function double precision function dble_fact_even(n) result(fact2) implicit none BEGIN_DOC ! n!! END_DOC integer :: n,k double precision, save :: memo(0:100) integer, save :: memomax = 0 double precision :: prod ASSERT (iand(n,1) /= 1) ! prod=1.d0 ! do k=2,n,2 ! prod=prod*dfloat(k) ! enddo ! fact2=prod ! return ! if (n <= memomax) then if (n < 2) then fact2 = 1.d0 else fact2 = memo(n) endif return endif integer :: i memo(0)=1.d0 memo(1)=1.d0 do i=memomax+2,min(n,100),2 memo(i) = memo(i-2)* dble(i) enddo memomax = min(n,100) fact2 = memo(memomax) if (n > 100) then double precision :: dble_logfact fact2 = dexp(dble_logfact(n)) endif end function double precision function dble_fact_odd(n) result(fact2) implicit none BEGIN_DOC ! n!! END_DOC integer :: n double precision, save :: memo(1:100) integer, save :: memomax = 1 ASSERT (iand(n,1) /= 0) if (n<=memomax) then if (n<3) then fact2 = 1.d0 else fact2 = memo(n) endif return endif integer :: i memo(1) = 1.d0 do i=memomax+2,min(n,99),2 memo(i) = memo(i-2)* dble(i) enddo memomax = min(n,99) fact2 = memo(memomax) if (n > 99) then double precision :: dble_logfact fact2 = dexp(dble_logfact(n)) endif end function double precision function dble_logfact(n) result(logfact2) implicit none BEGIN_DOC ! n!! END_DOC integer :: n integer :: k double precision :: prod prod=0.d0 do k=2,n,2 prod=prod+dlog(dfloat(k)) enddo logfact2=prod return end function subroutine write_git_log(iunit) implicit none BEGIN_DOC ! Write the last git commit in file iunit. END_DOC integer, intent(in) :: iunit write(iunit,*) '----------------' write(iunit,*) 'Last git commit:' BEGIN_SHELL [ /bin/bash ] git log -1 2>/dev/null | sed "s/'//g"| sed "s/^/ write(iunit,*) '/g" | sed "s/$/'/g" || echo "Unknown" END_SHELL write(iunit,*) '----------------' end BEGIN_PROVIDER [ double precision, inv_int, (128) ] implicit none BEGIN_DOC ! 1/i END_DOC integer :: i do i=1,128 inv_int(i) = 1.d0/dble(i) enddo END_PROVIDER subroutine wall_time(t) implicit none BEGIN_DOC ! The equivalent of cpu_time, but for the wall time. END_DOC double precision, intent(out) :: t integer*8 :: c integer*8, save :: rate = 0 if (rate == 0) then CALL SYSTEM_CLOCK(count_rate=rate) endif CALL SYSTEM_CLOCK(count=c) t = dble(c)/dble(rate) end BEGIN_PROVIDER [ integer, nproc ] implicit none BEGIN_DOC ! Number of current OpenMP threads END_DOC integer, external :: omp_get_num_threads nproc = 1 !$OMP PARALLEL !$OMP MASTER !$ nproc = omp_get_num_threads() !$OMP END MASTER !$OMP END PARALLEL END_PROVIDER double precision function u_dot_v(u,v,sze) implicit none BEGIN_DOC ! Compute END_DOC integer, intent(in) :: sze double precision, intent(in) :: u(sze),v(sze) double precision, external :: ddot !DIR$ FORCEINLINE u_dot_v = ddot(sze,u,1,v,1) end double precision function u_dot_u(u,sze) implicit none BEGIN_DOC ! Compute END_DOC integer, intent(in) :: sze double precision, intent(in) :: u(sze) double precision, external :: ddot !DIR$ FORCEINLINE u_dot_u = ddot(sze,u,1,u,1) end subroutine normalize(u,sze) implicit none BEGIN_DOC ! Normalizes vector u END_DOC integer, intent(in) :: sze double precision, intent(inout):: u(sze) double precision :: d double precision, external :: dnrm2 integer :: i !DIR$ FORCEINLINE d = dnrm2(sze,u,1) if (d /= 0.d0) then d = 1.d0/d endif if (d /= 1.d0) then !DIR$ FORCEINLINE call dscal(sze,d,u,1) endif end double precision function approx_dble(a,n) implicit none integer, intent(in) :: n double precision, intent(in) :: a double precision :: f integer :: i if (a == 0.d0) then approx_dble = 0.d0 return endif f = 1.d0 do i=1,-int(dlog10(dabs(a)))+n f = f*.1d0 enddo do i=1,int(dlog10(dabs(a)))-n f = f*10.d0 enddo approx_dble = dnint(a/f)*f end subroutine lowercase(txt,n) implicit none BEGIN_DOC ! Transform to lower case END_DOC character*(*), intent(inout) :: txt integer, intent(in) :: n character( * ), PARAMETER :: LOWER_CASE = 'abcdefghijklmnopqrstuvwxyz' character( * ), PARAMETER :: UPPER_CASE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' integer :: i, ic do i=1,n ic = index( UPPER_CASE, txt(i:i) ) if (ic /= 0) then txt(i:i) = LOWER_CASE(ic:ic) endif enddo end subroutine v2_over_x(v,x,res) !BEGIN_DOC ! Two by two diagonalization to avoid the divergence in v^2/x when x goes to 0 !END_DOC implicit none double precision, intent(in) :: v, x double precision, intent(out) :: res double precision :: delta_E, tmp, val res = 0d0 delta_E = x if (v == 0.d0) return val = 2d0 * v tmp = dsqrt(delta_E * delta_E + val * val) if (delta_E < 0.d0) then tmp = -tmp endif res = 0.5d0 * (tmp - delta_E) end ! --- subroutine check_sym(A, n) implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) integer :: i, j double precision :: dev_sym, norm, tmp dev_sym = 0.d0 norm = 0.d0 do i = 1, n do j = i+1, n tmp = A(j,i) - A(i,j) dev_sym += tmp * tmp norm += A(j,i) * A(j,i) enddo enddo print*, ' deviation from sym = ', dev_sym print*, ' norm = ', norm end subroutine check_sym ! --- subroutine sum_A_At(A, N) !BEGIN_DOC ! add a tensor with its transpose without a temporary tensor !END_DOC implicit none integer, intent(in) :: N double precision, intent(inout) :: A(N,N) integer :: i, j !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, j) & !$OMP SHARED (A, N) !$OMP DO do j = 1, N do i = j, N A(i,j) += A(j,i) enddo enddo !$OMP END DO !$OMP DO do j = 2, N do i = 1, j-1 A(i,j) = A(j,i) enddo enddo !$OMP END DO !$OMP END PARALLEL end ! --- subroutine sub_A_At(A, N) !BEGIN_DOC ! substruct a tensor with its transpose without a temporary tensor !END_DOC implicit none integer, intent(in) :: N double precision, intent(inout) :: A(N,N) integer :: i, j !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, j) & !$OMP SHARED (A, N) !$OMP DO do j = 1, N do i = j, N A(i,j) -= A(j,i) enddo enddo !$OMP END DO !$OMP DO do j = 2, N do i = 1, j-1 A(i,j) = -A(j,i) enddo enddo !$OMP END DO !$OMP END PARALLEL end ! --- logical function is_same_spin(sigma_1, sigma_2) BEGIN_DOC ! ! true if sgn(sigma_1) = sgn(sigma_2) ! END_DOC implicit none double precision, intent(in) :: sigma_1, sigma_2 if((sigma_1 * sigma_2) .gt. 0.d0) then is_same_spin = .true. else is_same_spin = .false. endif end function is_same_spin ! --- function Kronecker_delta(i, j) result(delta) BEGIN_DOC ! Kronecker Delta END_DOC implicit none integer, intent(in) :: i, j double precision :: delta if(i == j) then delta = 1.d0 else delta = 0.d0 endif end function Kronecker_delta ! --- subroutine diagonalize_sym_matrix(N, A, e) BEGIN_DOC ! ! Diagonalize a symmetric matrix ! END_DOC implicit none integer, intent(in) :: N double precision, intent(inout) :: A(N,N) double precision, intent(out) :: e(N) integer :: lwork, info double precision, allocatable :: work(:) allocate(work(1)) lwork = -1 call dsyev('V', 'U', N, A, N, e, work, lwork, info) lwork = int(work(1)) deallocate(work) allocate(work(lwork)) call dsyev('V', 'U', N, A, N, e, work, lwork, info) deallocate(work) if(info /= 0) then print*,'Problem in diagonalize_sym_matrix (dsyev)!!' endif end subroutine diagonalize_sym_matrix ! ---