subroutine give_all_stuffs_in_r_for_lyp_88(r,rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2) implicit none double precision, intent(in) :: r(3) double precision, intent(out) :: rho_a(N_states),rho_b(N_states),grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_2(N_states),rho(N_states) double precision :: grad_rho_a(3,N_states),grad_rho_b(3,N_states),grad_rho_a_b(N_states) double precision :: grad_aos_array(3,ao_num),aos_array(ao_num) call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,rho_a,rho_b, grad_rho_a, grad_rho_b, aos_array, grad_aos_array) integer :: i,istate rho = rho_a + rho_b grad_rho_a_2 = 0.d0 grad_rho_b_2 = 0.d0 grad_rho_a_b = 0.d0 do istate = 1, N_states do i = 1, 3 grad_rho_a_2(istate) += grad_rho_a(i,istate) * grad_rho_a(i,istate) grad_rho_b_2(istate) += grad_rho_b(i,istate) * grad_rho_b(i,istate) grad_rho_a_b(istate) += grad_rho_a(i,istate) * grad_rho_b(i,istate) enddo enddo grad_rho_2 = grad_rho_a_2 + grad_rho_b_2 + 2.d0 * grad_rho_a_b end double precision function ec_lyp_88(rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2) implicit none BEGIN_DOC ! LYP functional of the Lee, Yan, Parr, Phys. Rev B 1988, Vol 37, page 785. ! The expression used is the one by Miehlich, Savin, Stoll, Preuss, CPL, 1989 which gets rid of the laplacian of the density END_DOC include 'constants.include.F' ! Input variables double precision, intent(in) :: rho,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_2 ! Local variables double precision :: a,b,c,d,c_f,omega,delta double precision :: rho_13,rho_inv_13,rho_83,rho_113,rho_inv_113,denom double precision :: thr,huge_num,rho_inv double precision :: cst_2_113,cst_8_3,rho_2,rho_a_2,rho_b_2 double precision :: tmp1,tmp2,tmp3,tmp4 double precision :: big1,big2,big3 ! Constants of the LYP correlation functional a = 0.04918d0 b = 0.132d0 c = 0.2533d0 d = 0.349d0 ec_lyp_88 = 0.d0 thr = 1d-15 huge_num = 1.d0/thr if(dabs(rho_a).lt.thr)then return endif if(dabs(rho_b).lt.thr)then return endif if(rho.lt.0.d0)then print*,'pb !! rho.lt.0.d0' stop endif rho_13 = rho**(1.d0/3.d0) rho_113 = rho**(11.d0/3.d0) if(dabs(rho_13) < thr) then rho_inv_13 = huge_num else rho_inv_13 = 1.d0/rho_13 endif if (dabs(rho_113) < thr) then rho_inv_113 = huge_num else rho_inv_113 = 1.d0/rho_113 endif if (dabs(rho) < thr) then rho_inv = huge_num else rho_inv = 1.d0/rho endif ! Useful quantities to predefine denom = 1d0/(1d0 + d*rho_inv_13) omega = rho_inv_113*exp(-c*rho_inv_13)*denom delta = c*rho_inv_13 + d*rho_inv_13*denom c_f = 0.3d0*(3.d0*pi*pi)**(2.d0/3.d0) rho_2 = rho *rho rho_a_2 = rho_a*rho_a rho_b_2 = rho_b*rho_b cst_2_113 = 2.d0**(11.d0/3.d0) cst_8_3 = 8.d0/3.d0 ! first term in the equation (2) of Preuss CPL, 1989 big1 = 4.d0*denom*rho_a*rho_b*rho_inv tmp1 = cst_2_113*c_f*(rho_a**cst_8_3 + rho_b**cst_8_3) tmp2 = (47.d0/18.d0 - 7.d0/18.d0*delta)*grad_rho_2 tmp3 = - (5d0/2d0 - 1.d0/18d0*delta)*(grad_rho_a_2 + grad_rho_b_2) tmp4 = - (delta - 11d0)/9d0*(rho_a*rho_inv*grad_rho_a_2 + rho_b*rho_inv*grad_rho_b_2) big2 = rho_a*rho_b*(tmp1 + tmp2 + tmp3 + tmp4) tmp1 = -2d0/3d0*rho_2*grad_rho_2 tmp2 = grad_rho_b_2*(2d0/3d0*rho_2 - rho_a_2) tmp3 = grad_rho_a_2*(2d0/3d0*rho_2 - rho_b_2) big3 = tmp1 + tmp2 + tmp3 ec_lyp_88 = -a*big1 -a*b*omega*big2 -a*b*omega*big3 end double precision function ec_lyp2(RhoA,RhoB,GA,GB,GAB) include 'constants.include.F' implicit none double precision, intent(in) :: RhoA,RhoB,GA,GB,GAB double precision :: Tol,caa,cab,cac,cad,cae,RA,RB,comega,cdelta,cLaa,cLbb,cLab,E ec_lyp2 = 0.d0 Tol=1D-14 E=2.718281828459045D0 caa=0.04918D0 cab=0.132D0 cac=0.2533D0 cad=0.349D0 cae=(2D0**(11D0/3D0))*((3D0/10D0)*((3D0*(Pi**2D0))**(2D0/3D0))) RA = MAX(RhoA,0D0) RB = MAX(RhoB,0D0) IF ((RA.gt.Tol).OR.(RB.gt.Tol)) THEN IF ((RA.gt.Tol).AND.(RB.gt.Tol)) THEN comega = 1D0/(E**(cac/(RA+RB)**(1D0/3D0))*(RA+RB)**(10D0/3D0)*(cad+(RA+RB)**(1D0/3D0))) cdelta = (cac+cad+(cac*cad)/(RA+RB)**(1D0/3D0))/(cad+(RA+RB)**(1D0/3D0)) cLaa = (cab*comega*RB*(RA-3D0*cdelta*RA-9D0*RB-((-11D0+cdelta)*RA**2D0)/(RA+RB)))/9D0 cLbb = (cab*comega*RA*(-9D0*RA+(RB*(RA-3D0*cdelta*RA-4D0*(-3D0+cdelta)*RB))/(RA+RB)))/9D0 cLab = cab*comega*(((47D0-7D0*cdelta)*RA*RB)/9D0-(4D0*(RA+RB)**2D0)/3D0) ec_lyp2 = -(caa*(cLaa*GA+cLab*GAB+cLbb*GB+cab*cae*comega*RA*RB*(RA**(8D0/3D0)+RB**(8D0/3D0))+(4D0*RA*RB)/(RA+RB+cad*(RA+RB)**(2D0/3D0)))) endif endif end double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2) include 'constants.include.F' implicit none double precision, intent(in) :: rho_a,rho_b,tau,grad_rho_2 double precision :: cst_13,cst_23,cst_43,cst_53,rho_inv,cst_18,cst_3pi2 double precision :: thr,nup,ndo,xi,s,spin_d,drho,drho2,rho,inv_1alph,e_c_lsda1,h0 double precision :: rs,t_w,t_unif,ds_xi,alpha,fc_alpha,step_f,cst_1alph,beta_inf double precision :: c_1c,c_2c,d_c,e_c_ldsa1,h1,phi,t,beta_rs,gama,a,w_1,g_at2,phi_3,e_c_1 double precision :: b_1c,b_2c,b_3c,dx_xi,gc_xi,e_c_lsda0,w_0,g_inf,cx_xi,x_inf,f0,e_c_0 thr = 1.d-12 nup = max(rho_a,thr) ndo = max(rho_b,thr) rho = nup + ndo ec_scan = 0.d0 if((rho).lt.thr)return ! constants ... rho_inv = 1.d0/rho cst_13 = 1.d0/3.d0 cst_23 = 2.d0 * cst_13 cst_43 = 4.d0 * cst_13 cst_53 = 5.d0 * cst_13 cst_18 = 1.d0/8.d0 cst_3pi2 = 3.d0 * pi*pi drho2 = max(grad_rho_2,thr) drho = dsqrt(drho2) if((nup-ndo).gt.0.d0)then spin_d = max(nup-ndo,thr) else spin_d = min(nup-ndo,-thr) endif c_1c = 0.64d0 c_2c = 1.5d0 d_c = 0.7d0 b_1c = 0.0285764d0 b_2c = 0.0889d0 b_3c = 0.125541d0 gama = 0.031091d0 ! correlation energy lsda1 call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1) ! correlation energy per particle e_c_lsda1 = e_c_lsda1/rho xi = spin_d/rho rs = (cst_43 * pi * rho)**(-cst_13) s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 ) t_w = drho2 * cst_18 * rho_inv ds_xi = 0.5d0 * ( (1.d0+xi)**cst_53 + (1.d0 - xi)**cst_53) t_unif = 0.3d0 * (cst_3pi2)**cst_23 * rho**cst_53*ds_xi t_unif = max(t_unif,thr) alpha = (tau - t_w)/t_unif cst_1alph= 1.d0 - alpha if(cst_1alph.gt.0.d0)then cst_1alph= max(cst_1alph,thr) else cst_1alph= min(cst_1alph,-thr) endif inv_1alph= 1.d0/cst_1alph phi = 0.5d0 * ( (1.d0+xi)**cst_23 + (1.d0 - xi)**cst_23) phi_3 = phi*phi*phi t = (cst_3pi2/16.d0)**cst_13 * s / (phi * rs**0.5d0) w_1 = dexp(-e_c_lsda1/(gama * phi_3)) - 1.d0 a = beta_rs(rs) /(gama * w_1) g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0 h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2)) ! interpolation function if(cst_1alph.gt.0.d0)then fc_alpha = dexp(-c_1c * alpha * inv_1alph) else fc_alpha = - d_c * dexp(c_2c * inv_1alph) endif ! first part of the correlation energy e_c_1 = e_c_lsda1 + h1 dx_xi = 0.5d0 * ( (1.d0+xi)**cst_43 + (1.d0 - xi)**cst_43) gc_xi = (1.d0 - 2.3631d0 * (dx_xi - 1.d0) ) * (1.d0 - xi**12.d0) e_c_lsda0= - b_1c / (1.d0 + b_2c * rs**0.5d0 + b_3c * rs) w_0 = dexp(-e_c_lsda0/b_1c) - 1.d0 beta_inf = 0.066725d0 * 0.1d0 / 0.1778d0 cx_xi = -3.d0/(4.d0*pi) * (9.d0 * pi/4.d0)**cst_13 * dx_xi x_inf = 0.128026d0 f0 = -0.9d0 g_inf = 1.d0/(1.d0 + 4.d0 * x_inf * s*s)**0.25d0 h0 = b_1c * dlog(1.d0 + w_0 * (1.d0 - g_inf)) e_c_0 = (e_c_lsda0 + h0) * gc_xi ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1) end double precision function beta_rs(rs) implicit none double precision, intent(in) ::rs beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs) end double precision function step_f(x) implicit none double precision, intent(in) :: x if(x.lt.0.d0)then step_f = 0.d0 else step_f = 1.d0 endif end