BEGIN_PROVIDER [ double precision, ao_two_e_integral_alpha, (ao_num, ao_num) ] &BEGIN_PROVIDER [ double precision, ao_two_e_integral_beta , (ao_num, ao_num) ] use map_module implicit none BEGIN_DOC ! Alpha Fock matrix in ao basis set END_DOC integer :: i,j,k,l,k1,r,s integer :: i0,j0,k0,l0 integer*8 :: p,q double precision :: integral, c0, c1, c2 double precision :: ao_two_e_integral, local_threshold double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:) double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_two_e_integral_beta_tmp !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: ao_two_e_integral_alpha_tmp ao_two_e_integral_alpha = 0.d0 ao_two_e_integral_beta = 0.d0 if (do_direct_integrals) then !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,p,q,r,s,i0,j0,k0,l0, & !$OMP ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, c0, c1, c2, & !$OMP local_threshold)& !$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,& !$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, & !$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta) allocate(keys(1), values(1)) allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), & ao_two_e_integral_beta_tmp(ao_num,ao_num)) ao_two_e_integral_alpha_tmp = 0.d0 ao_two_e_integral_beta_tmp = 0.d0 q = ao_num*ao_num*ao_num*ao_num !$OMP DO SCHEDULE(dynamic) do p=1_8,q call two_e_integrals_index_reverse(kk,ii,ll,jj,p) if ( (kk(1)>ao_num).or. & (ii(1)>ao_num).or. & (jj(1)>ao_num).or. & (ll(1)>ao_num) ) then cycle endif k = kk(1) i = ii(1) l = ll(1) j = jj(1) logical, external :: ao_two_e_integral_zero if (ao_two_e_integral_zero(i,k,j,l)) then cycle endif local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j) if (local_threshold < ao_integrals_threshold) then cycle endif i0 = i j0 = j k0 = k l0 = l values(1) = 0.d0 local_threshold = ao_integrals_threshold/local_threshold do k2=1,8 if (kk(k2)==0) then cycle endif i = ii(k2) j = jj(k2) k = kk(k2) l = ll(k2) c0 = SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l) c1 = SCF_density_matrix_ao_alpha(k,i) c2 = SCF_density_matrix_ao_beta(k,i) if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then cycle endif if (values(1) == 0.d0) then values(1) = ao_two_e_integral(k0,l0,i0,j0) endif integral = c0 * values(1) ao_two_e_integral_alpha_tmp(i,j) += integral ao_two_e_integral_beta_tmp (i,j) += integral integral = values(1) ao_two_e_integral_alpha_tmp(l,j) -= c1 * integral ao_two_e_integral_beta_tmp (l,j) -= c2 * integral enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp !$OMP END CRITICAL !$OMP CRITICAL ao_two_e_integral_beta += ao_two_e_integral_beta_tmp !$OMP END CRITICAL deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp) !$OMP END PARALLEL else PROVIDE ao_two_e_integrals_in_map integer(omp_lock_kind) :: lck(ao_num) integer*8 :: i8 integer :: ii(8), jj(8), kk(8), ll(8), k2 integer(cache_map_size_kind) :: n_elements_max, n_elements integer(key_kind), allocatable :: keys(:) double precision, allocatable :: values(:) !$OMP PARALLEL DEFAULT(NONE) if (ao_num > 100) & !$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, & !$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)& !$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,& !$OMP ao_integrals_map, ao_two_e_integral_alpha, ao_two_e_integral_beta,HF_exchange) call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max) allocate(keys(n_elements_max), values(n_elements_max)) allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), & ao_two_e_integral_beta_tmp(ao_num,ao_num)) ao_two_e_integral_alpha_tmp = 0.d0 ao_two_e_integral_beta_tmp = 0.d0 !$OMP DO SCHEDULE(static,1) !DIR$ NOVECTOR do i8=0_8,ao_integrals_map%map_size n_elements = n_elements_max call get_cache_map(ao_integrals_map,i8,keys,values,n_elements) do k1=1,n_elements call two_e_integrals_index_reverse(kk,ii,ll,jj,keys(k1)) do k2=1,8 if (kk(k2)==0) then cycle endif i = ii(k2) j = jj(k2) k = kk(k2) l = ll(k2) integral = (SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)) * values(k1) ao_two_e_integral_alpha_tmp(i,j) += integral ao_two_e_integral_beta_tmp (i,j) += integral integral = values(k1) ao_two_e_integral_alpha_tmp(l,j) -= HF_exchange * (SCF_density_matrix_ao_alpha(k,i) * integral) ao_two_e_integral_beta_tmp (l,j) -= HF_exchange * (SCF_density_matrix_ao_beta (k,i) * integral) enddo enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp ao_two_e_integral_beta += ao_two_e_integral_beta_tmp !$OMP END CRITICAL deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp) !$OMP END PARALLEL endif END_PROVIDER BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ] &BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ] implicit none BEGIN_DOC ! Alpha Fock matrix in ao basis set END_DOC integer :: i,j do j=1,ao_num do i=1,ao_num Fock_matrix_ao_alpha(i,j) = Fock_matrix_alpha_no_xc_ao(i,j) + ao_potential_alpha_xc(i,j) Fock_matrix_ao_beta(i,j) = Fock_matrix_beta_no_xc_ao(i,j) + ao_potential_beta_xc(i,j) enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, Fock_matrix_alpha_no_xc_ao, (ao_num, ao_num) ] &BEGIN_PROVIDER [ double precision, Fock_matrix_beta_no_xc_ao, (ao_num, ao_num) ] implicit none BEGIN_DOC ! Mono electronic an Coulomb matrix in ao basis set END_DOC integer :: i,j do j=1,ao_num do i=1,ao_num Fock_matrix_alpha_no_xc_ao(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_alpha(i,j) Fock_matrix_beta_no_xc_ao(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_beta (i,j) enddo enddo END_PROVIDER