double precision function ao_two_e_integral_erf(i,j,k,l) implicit none BEGIN_DOC ! integral of the AO basis or (ij|kl) ! i(r1) j(r1) 1/r12 k(r2) l(r2) END_DOC integer,intent(in) :: i,j,k,l integer :: p,q,r,s double precision :: I_center(3),J_center(3),K_center(3),L_center(3) integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3) double precision :: integral include 'utils/constants.include.F' double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq integer :: iorder_p(3), iorder_q(3) double precision :: ao_two_e_integral_schwartz_accel_erf provide mu_erf if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then ao_two_e_integral_erf = ao_two_e_integral_schwartz_accel_erf(i,j,k,l) return endif dim1 = n_pt_max_integrals num_i = ao_nucl(i) num_j = ao_nucl(j) num_k = ao_nucl(k) num_l = ao_nucl(l) ao_two_e_integral_erf = 0.d0 if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) I_center(p) = nucl_coord(num_i,p) J_center(p) = nucl_coord(num_j,p) K_center(p) = nucl_coord(num_k,p) L_center(p) = nucl_coord(num_l,p) enddo double precision :: coef1, coef2, coef3, coef4 double precision :: p_inv,q_inv double precision :: general_primitive_integral_erf do p = 1, ao_prim_num(i) coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,& ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), & I_power,J_power,I_center,J_center,dim1) p_inv = 1.d0/pp do r = 1, ao_prim_num(k) coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & K_power,L_power,K_center,L_center,dim1) q_inv = 1.d0/qq integral = general_primitive_integral_erf(dim1, & P_new,P_center,fact_p,pp,p_inv,iorder_p, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q) ao_two_e_integral_erf = ao_two_e_integral_erf + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p else do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) enddo double precision :: ERI_erf do p = 1, ao_prim_num(i) coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) do r = 1, ao_prim_num(k) coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) integral = ERI_erf( & ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& I_power(1),J_power(1),K_power(1),L_power(1), & I_power(2),J_power(2),K_power(2),L_power(2), & I_power(3),J_power(3),K_power(3),L_power(3)) ao_two_e_integral_erf = ao_two_e_integral_erf + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p endif end double precision function ao_two_e_integral_schwartz_accel_erf(i,j,k,l) implicit none BEGIN_DOC ! integral of the AO basis or (ij|kl) ! i(r1) j(r1) 1/r12 k(r2) l(r2) END_DOC integer,intent(in) :: i,j,k,l integer :: p,q,r,s double precision :: I_center(3),J_center(3),K_center(3),L_center(3) integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3) double precision :: integral include 'utils/constants.include.F' double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq integer :: iorder_p(3), iorder_q(3) double precision, allocatable :: schwartz_kl(:,:) double precision :: schwartz_ij dim1 = n_pt_max_integrals num_i = ao_nucl(i) num_j = ao_nucl(j) num_k = ao_nucl(k) num_l = ao_nucl(l) ao_two_e_integral_schwartz_accel_erf = 0.d0 double precision :: thr thr = ao_integrals_threshold*ao_integrals_threshold allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k))) double precision :: coef3 double precision :: coef2 double precision :: p_inv,q_inv double precision :: coef1 double precision :: coef4 if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) I_center(p) = nucl_coord(num_i,p) J_center(p) = nucl_coord(num_j,p) K_center(p) = nucl_coord(num_k,p) L_center(p) = nucl_coord(num_l,p) enddo schwartz_kl(0,0) = 0.d0 do r = 1, ao_prim_num(k) coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k) schwartz_kl(0,r) = 0.d0 do s = 1, ao_prim_num(l) coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l) call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & K_power,L_power,K_center,L_center,dim1) q_inv = 1.d0/qq schwartz_kl(s,r) = general_primitive_integral_erf(dim1, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q) & * coef2 schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r)) enddo schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0)) enddo do p = 1, ao_prim_num(i) coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,& ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), & I_power,J_power,I_center,J_center,dim1) p_inv = 1.d0/pp schwartz_ij = general_primitive_integral_erf(dim1, & P_new,P_center,fact_p,pp,p_inv,iorder_p, & P_new,P_center,fact_p,pp,p_inv,iorder_p) * & coef2*coef2 if (schwartz_kl(0,0)*schwartz_ij < thr) then cycle endif do r = 1, ao_prim_num(k) if (schwartz_kl(0,r)*schwartz_ij < thr) then cycle endif coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) if (schwartz_kl(s,r)*schwartz_ij < thr) then cycle endif coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) double precision :: general_primitive_integral_erf call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & K_power,L_power,K_center,L_center,dim1) q_inv = 1.d0/qq integral = general_primitive_integral_erf(dim1, & P_new,P_center,fact_p,pp,p_inv,iorder_p, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q) ao_two_e_integral_schwartz_accel_erf = ao_two_e_integral_schwartz_accel_erf + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p else do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) enddo double precision :: ERI_erf schwartz_kl(0,0) = 0.d0 do r = 1, ao_prim_num(k) coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k) schwartz_kl(0,r) = 0.d0 do s = 1, ao_prim_num(l) coef2 = coef1*ao_coef_normalized_ordered_transp(s,l)*ao_coef_normalized_ordered_transp(s,l) schwartz_kl(s,r) = ERI_erf( & ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& K_power(1),L_power(1),K_power(1),L_power(1), & K_power(2),L_power(2),K_power(2),L_power(2), & K_power(3),L_power(3),K_power(3),L_power(3)) * & coef2 schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r)) enddo schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0)) enddo do p = 1, ao_prim_num(i) coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) schwartz_ij = ERI_erf( & ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),& I_power(1),J_power(1),I_power(1),J_power(1), & I_power(2),J_power(2),I_power(2),J_power(2), & I_power(3),J_power(3),I_power(3),J_power(3))*coef2*coef2 if (schwartz_kl(0,0)*schwartz_ij < thr) then cycle endif do r = 1, ao_prim_num(k) if (schwartz_kl(0,r)*schwartz_ij < thr) then cycle endif coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) if (schwartz_kl(s,r)*schwartz_ij < thr) then cycle endif coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) integral = ERI_erf( & ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& I_power(1),J_power(1),K_power(1),L_power(1), & I_power(2),J_power(2),K_power(2),L_power(2), & I_power(3),J_power(3),K_power(3),L_power(3)) ao_two_e_integral_schwartz_accel_erf = ao_two_e_integral_schwartz_accel_erf + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p endif deallocate (schwartz_kl) end subroutine compute_ao_two_e_integrals_erf(j,k,l,sze,buffer_value) implicit none use map_module BEGIN_DOC ! Compute AO 1/r12 integrals for all i and fixed j,k,l END_DOC include 'utils/constants.include.F' integer, intent(in) :: j,k,l,sze real(integral_kind), intent(out) :: buffer_value(sze) double precision :: ao_two_e_integral_erf integer :: i logical, external :: ao_one_e_integral_zero logical, external :: ao_two_e_integral_zero if (ao_one_e_integral_zero(j,l)) then buffer_value = 0._integral_kind return endif if (ao_two_e_integral_erf_schwartz(j,l) < thresh ) then buffer_value = 0._integral_kind return endif do i = 1, ao_num if (ao_two_e_integral_zero(i,j,k,l)) then buffer_value(i) = 0._integral_kind cycle endif if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thresh ) then buffer_value(i) = 0._integral_kind cycle endif !DIR$ FORCEINLINE buffer_value(i) = ao_two_e_integral_erf(i,k,j,l) enddo end double precision function general_primitive_integral_erf(dim, & P_new,P_center,fact_p,p,p_inv,iorder_p, & Q_new,Q_center,fact_q,q,q_inv,iorder_q) implicit none BEGIN_DOC ! Computes the integral where p,q,r,s are Gaussian primitives END_DOC integer,intent(in) :: dim include 'utils/constants.include.F' double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv integer, intent(in) :: iorder_p(3) integer, intent(in) :: iorder_q(3) double precision :: r_cut,gama_r_cut,rho,dist double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim) integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz double precision :: bla integer :: ix,iy,iz,jx,jy,jz,i double precision :: a,b,c,d,e,f,accu,pq,const double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2 integer :: n_pt_tmp,n_pt_out, iorder double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim) general_primitive_integral_erf = 0.d0 !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly ! Gaussian Product ! ---------------- double precision :: p_plus_q p_plus_q = (p+q) * ((p*q)/(p+q) + mu_erf*mu_erf)/(mu_erf*mu_erf) pq = p_inv*0.5d0*q_inv pq_inv = 0.5d0/p_plus_q p10_1 = q*pq ! 1/(2p) p01_1 = p*pq ! 1/(2q) pq_inv_2 = pq_inv+pq_inv p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p) p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq) accu = 0.d0 iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1) !DIR$ VECTOR ALIGNED do ix=0,iorder Ix_pol(ix) = 0.d0 enddo n_Ix = 0 do ix = 0, iorder_p(1) if (abs(P_new(ix,1)) < thresh) cycle a = P_new(ix,1) do jx = 0, iorder_q(1) d = a*Q_new(jx,1) if (abs(d) < thresh) cycle !DEC$ FORCEINLINE call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx) !DEC$ FORCEINLINE call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix) enddo enddo if (n_Ix == -1) then return endif iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2) !DIR$ VECTOR ALIGNED do ix=0, iorder Iy_pol(ix) = 0.d0 enddo n_Iy = 0 do iy = 0, iorder_p(2) if (abs(P_new(iy,2)) > thresh) then b = P_new(iy,2) do jy = 0, iorder_q(2) e = b*Q_new(jy,2) if (abs(e) < thresh) cycle !DEC$ FORCEINLINE call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny) !DEC$ FORCEINLINE call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy) enddo endif enddo if (n_Iy == -1) then return endif iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3) do ix=0,iorder Iz_pol(ix) = 0.d0 enddo n_Iz = 0 do iz = 0, iorder_p(3) if (abs(P_new(iz,3)) > thresh) then c = P_new(iz,3) do jz = 0, iorder_q(3) f = c*Q_new(jz,3) if (abs(f) < thresh) cycle !DEC$ FORCEINLINE call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz) !DEC$ FORCEINLINE call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz) enddo endif enddo if (n_Iz == -1) then return endif rho = p*q *pq_inv_2 ! le rho qui va bien dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + & (P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + & (P_center(3) - Q_center(3))*(P_center(3) - Q_center(3)) const = dist*rho n_pt_tmp = n_Ix+n_Iy do i=0,n_pt_tmp d_poly(i)=0.d0 enddo !DEC$ FORCEINLINE call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp) if (n_pt_tmp == -1) then return endif n_pt_out = n_pt_tmp+n_Iz do i=0,n_pt_out d1(i)=0.d0 enddo !DEC$ FORCEINLINE call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out) double precision :: rint_sum accu = accu + rint_sum(n_pt_out,const,d1) ! change p+q in dsqrt general_primitive_integral_erf = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p_plus_q) end double precision function ERI_erf(alpha,beta,delta,gama,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z) implicit none BEGIN_DOC ! Atomic primtive two-electron integral between the 4 primitives : ! ! * primitive 1 : $x_1^{a_x} y_1^{a_y} z_1^{a_z} \exp(-\alpha * r1^2)$ ! * primitive 2 : $x_1^{b_x} y_1^{b_y} z_1^{b_z} \exp(- \beta * r1^2)$ ! * primitive 3 : $x_2^{c_x} y_2^{c_y} z_2^{c_z} \exp(-\delta * r2^2)$ ! * primitive 4 : $x_2^{d_x} y_2^{d_y} z_2^{d_z} \exp(-\gamma * r2^2)$ ! END_DOC double precision, intent(in) :: delta,gama,alpha,beta integer, intent(in) :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z integer :: a_x_2,b_x_2,c_x_2,d_x_2,a_y_2,b_y_2,c_y_2,d_y_2,a_z_2,b_z_2,c_z_2,d_z_2 integer :: i,j,k,l,n_pt integer :: n_pt_sup double precision :: p,q,denom,coeff double precision :: I_f integer :: nx,ny,nz include 'utils/constants.include.F' nx = a_x+b_x+c_x+d_x if(iand(nx,1) == 1) then ERI_erf = 0.d0 return endif ny = a_y+b_y+c_y+d_y if(iand(ny,1) == 1) then ERI_erf = 0.d0 return endif nz = a_z+b_z+c_z+d_z if(iand(nz,1) == 1) then ERI_erf = 0.d0 return endif ASSERT (alpha >= 0.d0) ASSERT (beta >= 0.d0) ASSERT (delta >= 0.d0) ASSERT (gama >= 0.d0) p = alpha + beta q = delta + gama double precision :: p_plus_q p_plus_q = (p+q) * ((p*q)/(p+q) + mu_erf*mu_erf)/(mu_erf*mu_erf) ASSERT (p+q >= 0.d0) n_pt = ishft( nx+ny+nz,1 ) coeff = pi_5_2 / (p * q * dsqrt(p_plus_q)) if (n_pt == 0) then ERI_erf = coeff return endif call integrale_new_erf(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt) ERI_erf = I_f * coeff end subroutine integrale_new_erf(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt) BEGIN_DOC ! Calculate the integral of the polynomial : ! ! $I_x1(a_x+b_x, c_x+d_x,p,q) \, I_x1(a_y+b_y, c_y+d_y,p,q) \, I_x1(a_z+b_z, c_z+d_z,p,q)$ ! ! between $( 0 ; 1)$ END_DOC implicit none include 'utils/constants.include.F' double precision :: p,q integer :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z integer :: i, n_pt, j double precision :: I_f, pq_inv, p10_1, p10_2, p01_1, p01_2,rho,pq_inv_2 integer :: ix,iy,iz, jx,jy,jz, sx,sy,sz j = ishft(n_pt,-1) ASSERT (n_pt > 1) double precision :: p_plus_q p_plus_q = (p+q) * ((p*q)/(p+q) + mu_erf*mu_erf)/(mu_erf*mu_erf) pq_inv = 0.5d0/(p_plus_q) pq_inv_2 = pq_inv + pq_inv p10_1 = 0.5d0/p p01_1 = 0.5d0/q p10_2 = 0.5d0 * q /(p * p_plus_q) p01_2 = 0.5d0 * p /(q * p_plus_q) double precision :: B00(n_pt_max_integrals) double precision :: B10(n_pt_max_integrals), B01(n_pt_max_integrals) double precision :: t1(n_pt_max_integrals), t2(n_pt_max_integrals) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: t1, t2, B10, B01, B00 ix = a_x+b_x jx = c_x+d_x iy = a_y+b_y jy = c_y+d_y iz = a_z+b_z jz = c_z+d_z sx = ix+jx sy = iy+jy sz = iz+jz !DIR$ VECTOR ALIGNED do i = 1,n_pt B10(i) = p10_1 - gauleg_t2(i,j)* p10_2 B01(i) = p01_1 - gauleg_t2(i,j)* p01_2 B00(i) = gauleg_t2(i,j)*pq_inv enddo if (sx > 0) then call I_x1_new(ix,jx,B10,B01,B00,t1,n_pt) else !DIR$ VECTOR ALIGNED do i = 1,n_pt t1(i) = 1.d0 enddo endif if (sy > 0) then call I_x1_new(iy,jy,B10,B01,B00,t2,n_pt) !DIR$ VECTOR ALIGNED do i = 1,n_pt t1(i) = t1(i)*t2(i) enddo endif if (sz > 0) then call I_x1_new(iz,jz,B10,B01,B00,t2,n_pt) !DIR$ VECTOR ALIGNED do i = 1,n_pt t1(i) = t1(i)*t2(i) enddo endif I_f= 0.d0 !DIR$ VECTOR ALIGNED do i = 1,n_pt I_f += gauleg_w(i,j)*t1(i) enddo end subroutine compute_ao_integrals_erf_jl(j,l,n_integrals,buffer_i,buffer_value) implicit none use map_module BEGIN_DOC ! Parallel client for AO integrals END_DOC integer, intent(in) :: j,l integer,intent(out) :: n_integrals integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num) real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num) integer :: i,k double precision :: ao_two_e_integral_erf,cpu_1,cpu_2, wall_1, wall_2 double precision :: integral, wall_0 double precision :: thr integer :: kk, m, j1, i1 logical, external :: ao_two_e_integral_zero thr = ao_integrals_threshold n_integrals = 0 j1 = j+ishft(l*l-l,-1) do k = 1, ao_num ! r1 i1 = ishft(k*k-k,-1) if (i1 > j1) then exit endif do i = 1, k i1 += 1 if (i1 > j1) then exit endif if (ao_two_e_integral_zero(i,j,k,l)) then cycle endif if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thr ) then cycle endif !DIR$ FORCEINLINE integral = ao_two_e_integral_erf(i,k,j,l) ! i,k : r1 j,l : r2 if (abs(integral) < thr) then cycle endif n_integrals += 1 !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,buffer_i(n_integrals)) buffer_value(n_integrals) = integral enddo enddo end