subroutine davidson_diag_h_cfg(dets_in,u_in,dim_in,energies,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged) use bitmasks implicit none BEGIN_DOC ! Davidson diagonalization. ! ! dets_in : bitmasks corresponding to determinants ! ! u_in : guess coefficients on the various states. Overwritten ! on exit ! ! dim_in : leftmost dimension of u_in ! ! sze : Number of determinants ! ! N_st : Number of eigenstates ! END_DOC integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag, Nint integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) double precision, intent(inout) :: u_in(dim_in,N_st_diag) double precision, intent(out) :: energies(N_st_diag) integer, intent(in) :: dressing_state logical, intent(out) :: converged double precision, allocatable :: H_jj(:) double precision, external :: diag_H_mat_elem, diag_S_mat_elem integer :: i,k ASSERT (N_st > 0) ASSERT (sze > 0) ASSERT (Nint > 0) ASSERT (Nint == N_int) PROVIDE mo_two_e_integrals_in_map allocate(H_jj(sze)) H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint) !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(sze,H_jj, dets_in,Nint) & !$OMP PRIVATE(i) !$OMP DO SCHEDULE(static) do i=2,sze H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint) enddo !$OMP END DO !$OMP END PARALLEL if (dressing_state > 0) then do k=1,N_st do i=1,sze H_jj(i) += u_in(i,k) * dressing_column_h(i,k) enddo enddo endif call davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag,Nint,dressing_state,converged) deallocate(H_jj) end subroutine davidson_diag_cfg_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N_st,N_st_diag_in,Nint,dressing_state,converged) use bitmasks use mmap_module implicit none BEGIN_DOC ! Davidson diagonalization with specific diagonal elements of the H matrix ! ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson ! ! dets_in : bitmasks corresponding to determinants ! ! u_in : guess coefficients on the various states. Overwritten ! on exit ! ! dim_in : leftmost dimension of u_in ! ! sze : Number of determinants ! ! N_st : Number of eigenstates ! ! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze ! END_DOC integer, intent(in) :: dim_in, sze, sze_csf, N_st, N_st_diag_in, Nint integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) double precision, intent(in) :: H_jj(sze) integer, intent(in) :: dressing_state double precision, intent(inout) :: u_in(dim_in,N_st_diag_in) double precision, intent(out) :: energies(N_st_diag_in) integer :: iter, N_st_diag integer :: i,j,k,l,m,kk,ii,ll logical, intent(inout) :: converged double precision, external :: u_dot_v, u_dot_u integer :: k_pairs, kl integer :: iter2, itertot double precision, allocatable :: y(:,:), h(:,:), lambda(:) double precision, allocatable :: s_tmp(:,:) double precision :: diag_h_mat_elem double precision, allocatable :: residual_norm(:) character*(16384) :: write_buffer double precision :: to_print(2,N_st) double precision :: cpu, wall integer :: shift, shift2, itermax, istate double precision :: r1, r2, alpha logical :: state_ok(N_st_diag_in*davidson_sze_max) integer :: nproc_target integer :: order(N_st_diag_in) double precision :: cmax double precision, allocatable :: U(:,:), U_csf(:,:), overlap(:,:) double precision, allocatable :: tmpU(:,:), tmpW(:,:) double precision, pointer :: W(:,:), W_csf(:,:) logical :: disk_based double precision :: energy_shift(N_st_diag_in*davidson_sze_max) include 'constants.include.F' N_st_diag = N_st_diag_in !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda if (N_st_diag*3 > sze) then print *, 'error in Davidson :' print *, 'Increase n_det_max_full to ', N_st_diag*3 stop -1 endif itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1 itertot = 0 if (state_following) then allocate(overlap(N_st_diag*itermax, N_st_diag*itermax)) else allocate(overlap(1,1)) ! avoid 'if' for deallocate endif overlap = 0.d0 PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2 call write_time(6) write(6,'(A)') '' write(6,'(A)') 'Davidson Diagonalization' write(6,'(A)') '------------------------' write(6,'(A)') '' ! Find max number of cores to fit in memory ! ----------------------------------------- nproc_target = nproc double precision :: rss integer :: maxab maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 m=1 disk_based = .False. call resident_memory(rss) do r1 = 8.d0 * &! bytes ( dble(sze)*(N_st_diag) &! U + dble(sze_csf)*(N_st_diag*itermax) &! U_csf + dble(sze)*(N_st_diag) &! W + dble(sze_csf)*(N_st_diag*itermax) &! W_csf + 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp + 1.d0*(N_st_diag*itermax) &! lambda + 1.d0*(N_st_diag) &! residual_norm ! In H_u_0_nstates_zmq + 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector + 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave + 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_* + nproc_target * &! In OMP section ( 1.d0*(N_int*maxab) &! buffer + 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx ) / 1024.d0**3 if (nproc_target == 0) then call check_mem(r1,irp_here) nproc_target = 1 exit endif if (r1+rss < qp_max_mem) then exit endif if (itermax > 4) then itermax = itermax - 1 else if (m==1.and.disk_based_davidson) then m=0 disk_based = .True. itermax = 6 else nproc_target = nproc_target - 1 endif enddo nthreads_davidson = nproc_target TOUCH nthreads_davidson call write_int(6,N_st,'Number of states') call write_int(6,N_st_diag,'Number of states in diagonalization') call write_int(6,sze,'Number of determinants') call write_int(6,sze_csf,'Number of CSFs') call write_int(6,nproc_target,'Number of threads for diagonalization') call write_double(6, r1, 'Memory(Gb)') if (disk_based) then print *, 'Using swap space to reduce RAM' endif !--------------- write(6,'(A)') '' write_buffer = '=====' do i=1,N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') write_buffer(1:6+41*N_st) write_buffer = 'Iter' do i=1,N_st write_buffer = trim(write_buffer)//' Energy Residual ' enddo write(6,'(A)') write_buffer(1:6+41*N_st) write_buffer = '=====' do i=1,N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') write_buffer(1:6+41*N_st) if (disk_based) then ! Create memory-mapped files for W and S type(c_ptr) :: ptr_w, ptr_s integer :: fd_s, fd_w call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),& 8, fd_w, .False., ptr_w) call c_f_pointer(ptr_w, W_csf, (/sze_csf,N_st_diag*itermax/)) else allocate(W(sze,N_st_diag),W_csf(sze_csf,N_st_diag*itermax)) endif allocate( & ! Large U(sze,N_st_diag), & U_csf(sze_csf,N_st_diag*itermax), & ! Small h(N_st_diag*itermax,N_st_diag*itermax), & y(N_st_diag*itermax,N_st_diag*itermax), & s_tmp(N_st_diag*itermax,N_st_diag*itermax), & residual_norm(N_st_diag), & lambda(N_st_diag*itermax)) h = 0.d0 U = 0.d0 y = 0.d0 s_tmp = 0.d0 ASSERT (N_st > 0) ASSERT (N_st_diag >= N_st) ASSERT (sze > 0) ASSERT (Nint > 0) ASSERT (Nint == N_int) ! Davidson iterations ! =================== converged = .False. kk=1 do k=N_st+1,N_st_diag do i=1,sze !call random_number(r1) !call random_number(r2) r1 = 0.5 r2 = 0.5 r1 = dsqrt(-2.d0*dlog(r1)) r2 = dtwo_pi*r2 u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st) enddo do while(POPCNT(AND(psi_det(1,1,kk),psi_det(1,2,kk))) .ne. 3) kk=kk+1 end do u_in(kk,k) = u_in(kk,k) + 10.d0 kk=kk+1 enddo do k=1,N_st_diag call normalize(u_in(1,k),sze) enddo do k=1,N_st_diag do i=1,sze U(i,k) = u_in(i,k) enddo enddo ! Make random verctors eigenstates of S2 call convertWFfromDETtoCSF(N_st_diag,U,U_csf) !call convertWFfromCSFtoDET(N_st_diag,U_csf,U) do while (.not.converged) itertot = itertot+1 if (itertot == 8) then exit endif do iter=1,itermax-1 shift = N_st_diag*(iter-1) shift2 = N_st_diag*iter ! if ((iter > 1).or.(itertot == 1)) then ! Compute |W_k> = \sum_i |i> ! ----------------------------------- !call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift+1),U) PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals if ((sze > 100000).and.distributed_davidson) then !call H_u_0_nstates_zmq (W,U,N_st_diag,sze) allocate(tmpW(N_st_diag,sze_csf)) allocate(tmpU(N_st_diag,sze_csf)) do kk=1,N_st_diag do ii=1,sze_csf tmpU(kk,ii) = U_csf(ii,shift+kk) enddo enddo call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1) do kk=1,N_st_diag do ii=1,sze_csf W_csf(ii,shift+kk)=tmpW(kk,ii) enddo enddo deallocate(tmpW) deallocate(tmpU) else !call H_u_0_nstates_openmp(W,U,N_st_diag,sze) allocate(tmpW(N_st_diag,sze_csf)) allocate(tmpU(N_st_diag,sze_csf)) do kk=1,N_st_diag do ii=1,sze_csf tmpU(kk,ii) = U_csf(ii,shift+kk) enddo enddo call calculate_sigma_vector_cfg_nst_naive_store(tmpW,tmpU,N_st_diag,sze_csf,1,sze_csf,0,1) do kk=1,N_st_diag do ii=1,sze_csf W_csf(ii,shift+kk)=tmpW(kk,ii) enddo enddo deallocate(tmpW) deallocate(tmpU) endif ! else ! ! Already computed in update below ! continue ! endif if (dressing_state > 0) then if (N_st == 1) then l = dressed_column_idx(1) double precision :: f f = 1.0d0/psi_coef(l,1) do istate=1,N_st_diag do i=1,sze W(i,istate) += dressing_column_h(i,1) *f * U(l,istate) W(l,istate) += dressing_column_h(i,1) *f * U(i,istate) enddo enddo else call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, & psi_coef, size(psi_coef,1), & U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1)) call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, & dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), & 1.d0, W(1,1), size(W,1)) call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, & dressing_column_h, size(dressing_column_h,1), & U(1,1), size(U,1), 0.d0, s_tmp, size(s_tmp,1)) call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, & psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), & 1.d0, W(1,1), size(W,1)) endif endif !call convertWFfromDETtoCSF(N_st_diag,W,W_csf(1,shift+1)) ! Compute h_kl = = ! ------------------------------------------- call dgemm('T','N', shift2, shift2, sze_csf, & 1.d0, U_csf, size(U_csf,1), W_csf, size(W_csf,1), & 0.d0, h, size(h,1)) call dgemm('T','N', shift2, shift2, sze_csf, & 1.d0, U_csf, size(U_csf,1), U_csf, size(U_csf,1), & 0.d0, s_tmp, size(s_tmp,1)) ! Diagonalize h ! --------------- integer :: lwork, info double precision, allocatable :: work(:) y = h lwork = -1 allocate(work(1)) call dsygv(1,'V','U',shift2,y,size(y,1), & s_tmp,size(s_tmp,1), lambda, work,lwork,info) lwork = int(work(1)) deallocate(work) allocate(work(lwork)) call dsygv(1,'V','U',shift2,y,size(y,1), & s_tmp,size(s_tmp,1), lambda, work,lwork,info) deallocate(work) if (info /= 0) then stop 'DSYGV Diagonalization failed' endif ! Compute Energy for each eigenvector ! ----------------------------------- call dgemm('N','N',shift2,shift2,shift2, & 1.d0, h, size(h,1), y, size(y,1), & 0.d0, s_tmp, size(s_tmp,1)) call dgemm('T','N',shift2,shift2,shift2, & 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), & 0.d0, h, size(h,1)) do k=1,shift2 lambda(k) = h(k,k) enddo if (state_following) then overlap = -1.d0 do i=1,shift2 do k=1,shift2 overlap(k,i) = dabs(y(k,i)) enddo enddo do k=1,N_st cmax = -1.d0 do i=1,N_st if (overlap(i,k) > cmax) then cmax = overlap(i,k) order(k) = i endif enddo do i=1,N_st_diag overlap(order(k),i) = -1.d0 enddo enddo overlap = y do k=1,N_st l = order(k) if (k /= l) then y(1:shift2,k) = overlap(1:shift2,l) endif enddo do k=1,N_st overlap(k,1) = lambda(k) enddo endif ! Express eigenvectors of h in the csf basis ! ------------------------------------------ call dgemm('N','N', sze_csf, N_st_diag, shift2, & 1.d0, U_csf, size(U_csf,1), y, size(y,1), 0.d0, U_csf(1,shift2+1), size(U_csf,1)) call convertWFfromCSFtoDET(N_st_diag,U_csf(1,shift2+1),U) call dgemm('N','N', sze_csf, N_st_diag, shift2, & 1.d0, W_csf, size(W_csf,1), y, size(y,1), 0.d0, W_csf(1,shift2+1), size(W_csf,1)) call convertWFfromCSFtoDET(N_st_diag,W_csf(1,shift2+1),W) ! Compute residual vector and davidson step ! ----------------------------------------- !if (without_diagonal) then !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k) do k=1,N_st_diag do i=1,sze U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) & /max(H_jj(i) - lambda (k),1.d-2) enddo enddo !$OMP END PARALLEL DO !else ! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k) ! do k=1,N_st_diag ! do i=1,sze ! U(i,k) = (lambda(k) * U(i,k) - W(i,k) ) ! enddo ! enddo ! !$OMP END PARALLEL DO !endif do k=1,N_st residual_norm(k) = u_dot_u(U(1,k),sze) to_print(1,k) = lambda(k) + nuclear_repulsion to_print(2,k) = residual_norm(k) enddo call convertWFfromDETtoCSF(N_st_diag,U,U_csf(1,shift2+1)) if ((itertot>1).and.(iter == 1)) then !don't print continue else write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st) endif ! Check convergence if (iter > 1) then if (threshold_davidson_from_pt2) then converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2 else converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson endif endif do k=1,N_st if (residual_norm(k) > 1.d8) then print *, 'Davidson failed' stop -1 endif enddo if (converged) then exit endif logical, external :: qp_stop if (qp_stop()) then converged = .True. exit endif enddo ! Re-contract U ! ------------- call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, & W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) do k=1,N_st_diag do i=1,sze_csf W_csf(i,k) = u_in(i,k) enddo enddo call convertWFfromCSFtoDET(N_st_diag,W_csf,W) call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, & U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) do k=1,N_st_diag do i=1,sze_csf U_csf(i,k) = u_in(i,k) enddo enddo call convertWFfromCSFtoDET(N_st_diag,U_csf,U) enddo call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2) do k=1,N_st_diag do i=1,sze u_in(i,k) = U(i,k) enddo enddo do k=1,N_st_diag energies(k) = lambda(k) enddo write_buffer = '======' do i=1,N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') trim(write_buffer) write(6,'(A)') '' call write_time(6) if (disk_based)then ! Remove temp files integer, external :: getUnitAndOpen call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w ) fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r') close(fd_w,status='delete') else deallocate(W, W_csf) endif deallocate ( & residual_norm, & U, U_csf, overlap, & h, y, s_tmp, & lambda & ) FREE nthreads_davidson end