subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm) implicit none BEGIN_DOC ! returns the value and gradients of the mu(r) mean field, together with the HF density and its gradients. END_DOC include 'constants.include.F' double precision, intent(in) :: r(3) double precision, intent(out):: grad_mu_mf(3), grad_dm(3) double precision, intent(out):: mu_mf, dm double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3) double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b double precision :: dist call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b) dm = dm_a + dm_b grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3) if(dabs(two_bod_dens).lt.1.d-10)then mu_mf = 1.d+10 grad_mu_mf = 0.d0 else if(mu_of_r_tc=="Erfmu")then mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0) grad_mu_mf(1:3) = 0.3333333333d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))& /(two_bod_dens*two_bod_dens) else if(mu_of_r_tc=="Standard")then mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))& /(two_bod_dens*two_bod_dens) else if(mu_of_r_tc=="Erfmugauss")then mu_mf = (f_mf_ab/two_bod_dens + 0.25d0)/c_mu_gauss_tot grad_mu_mf(1:3) = 1.d0/c_mu_gauss_tot* (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))& /(two_bod_dens*two_bod_dens) else print*,'Wrong value for mu_of_r_tc !' stop endif endif end