BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft, (mo_num,mo_num, N_states)] implicit none BEGIN_DOC ! density matrix for alpha electrons in the MO basis used for all DFT calculations based on the density END_DOC double precision :: delta_alpha(mo_num,mo_num,N_states) if(density_for_dft .EQ. "damping_rs_dft")then delta_alpha = one_e_dm_mo_alpha - data_one_e_dm_alpha_mo one_e_dm_mo_alpha_for_dft = data_one_e_dm_alpha_mo + damping_for_rs_dft * delta_alpha else if (density_for_dft .EQ. "input_density")then one_e_dm_mo_alpha_for_dft = data_one_e_dm_alpha_mo else if (density_for_dft .EQ. "WFT")then provide mo_coef one_e_dm_mo_alpha_for_dft = one_e_dm_mo_alpha else if (density_for_dft .EQ. "KS")then provide mo_coef one_e_dm_mo_alpha_for_dft = one_body_dm_mo_alpha_one_det endif END_PROVIDER BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft, (mo_num,mo_num, N_states)] implicit none BEGIN_DOC ! density matrix for beta electrons in the MO basis used for all DFT calculations based on the density END_DOC double precision :: delta_beta(mo_num,mo_num,N_states) if(density_for_dft .EQ. "damping_rs_dft")then delta_beta = one_e_dm_mo_beta - data_one_e_dm_beta_mo one_e_dm_mo_beta_for_dft = data_one_e_dm_beta_mo + damping_for_rs_dft * delta_beta else if (density_for_dft .EQ. "input_density")then one_e_dm_mo_beta_for_dft = data_one_e_dm_beta_mo else if (density_for_dft .EQ. "WFT")then provide mo_coef one_e_dm_mo_beta_for_dft = one_e_dm_mo_beta else if (density_for_dft .EQ. "KS")then provide mo_coef one_e_dm_mo_beta_for_dft = one_body_dm_mo_beta_one_det endif END_PROVIDER BEGIN_PROVIDER [double precision, one_e_dm_mo_for_dft, (mo_num,mo_num, N_states)] implicit none one_e_dm_mo_for_dft = one_e_dm_mo_beta_for_dft + one_e_dm_mo_alpha_for_dft END_PROVIDER BEGIN_PROVIDER [double precision, one_e_dm_average_mo_for_dft, (mo_num,mo_num)] implicit none integer :: i one_e_dm_average_mo_for_dft = 0.d0 do i = 1, N_states one_e_dm_average_mo_for_dft(:,:) += one_e_dm_mo_for_dft(:,:,i) * state_average_weight(i) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, one_e_dm_alpha_ao_for_dft, (ao_num,ao_num,N_states) ] &BEGIN_PROVIDER [ double precision, one_e_dm_beta_ao_for_dft, (ao_num,ao_num,N_states) ] BEGIN_DOC ! one body density matrix on the AO basis based on one_e_dm_mo_alpha_for_dft END_DOC implicit none integer :: istate double precision :: mo_alpha,mo_beta one_e_dm_alpha_ao_for_dft = 0.d0 one_e_dm_beta_ao_for_dft = 0.d0 do istate = 1, N_states call mo_to_ao_no_overlap( one_e_dm_mo_alpha_for_dft(1,1,istate), & size(one_e_dm_mo_alpha_for_dft,1), & one_e_dm_alpha_ao_for_dft(1,1,istate), & size(one_e_dm_alpha_ao_for_dft,1) ) call mo_to_ao_no_overlap( one_e_dm_mo_beta_for_dft(1,1,istate), & size(one_e_dm_mo_beta_for_dft,1), & one_e_dm_beta_ao_for_dft(1,1,istate), & size(one_e_dm_beta_ao_for_dft,1) ) enddo END_PROVIDER BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_one_det, (mo_num,mo_num, N_states)] &BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_one_det, (mo_num,mo_num, N_states)] implicit none BEGIN_DOC ! One body density matrix on the |MO| basis for a single determinant END_DOC integer :: i one_body_dm_mo_alpha_one_det = 0.d0 one_body_dm_mo_beta_one_det = 0.d0 do i =1, elec_alpha_num one_body_dm_mo_alpha_one_det(i,i, 1:N_states) = 1.d0 enddo do i =1, elec_beta_num one_body_dm_mo_beta_one_det(i,i, 1:N_states) = 1.d0 enddo END_PROVIDER