! --- double precision function ao_two_e_integral(i, j, k, l) BEGIN_DOC ! integral of the AO basis <ik|jl> or (ij|kl) ! i(r1) j(r1) 1/r12 k(r2) l(r2) END_DOC implicit none include 'utils/constants.include.F' integer, intent(in) :: i, j, k, l integer :: p, q, r, s integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3) integer :: iorder_p(3), iorder_q(3) double precision :: I_center(3), J_center(3), K_center(3), L_center(3) double precision :: integral double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq double precision, external :: ao_two_e_integral_erf double precision, external :: ao_two_e_integral_cosgtos double precision, external :: ao_two_e_integral_schwartz_accel if(use_cosgtos) then !print *, ' use_cosgtos for ao_two_e_integral ?', use_cosgtos ao_two_e_integral = ao_two_e_integral_cosgtos(i, j, k, l) else if (use_only_lr) then ao_two_e_integral = ao_two_e_integral_erf(i, j, k, l) else if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then ao_two_e_integral = ao_two_e_integral_schwartz_accel(i,j,k,l) else dim1 = n_pt_max_integrals num_i = ao_nucl(i) num_j = ao_nucl(j) num_k = ao_nucl(k) num_l = ao_nucl(l) ao_two_e_integral = 0.d0 if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) I_center(p) = nucl_coord(num_i,p) J_center(p) = nucl_coord(num_j,p) K_center(p) = nucl_coord(num_k,p) L_center(p) = nucl_coord(num_l,p) enddo double precision :: coef1, coef2, coef3, coef4 double precision :: p_inv,q_inv double precision :: general_primitive_integral do p = 1, ao_prim_num(i) coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,& ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), & I_power,J_power,I_center,J_center,dim1) p_inv = 1.d0/pp do r = 1, ao_prim_num(k) coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & K_power,L_power,K_center,L_center,dim1) q_inv = 1.d0/qq integral = general_primitive_integral(dim1, & P_new,P_center,fact_p,pp,p_inv,iorder_p, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q) ao_two_e_integral = ao_two_e_integral + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p else do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) enddo double precision :: ERI do p = 1, ao_prim_num(i) coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) do r = 1, ao_prim_num(k) coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) integral = ERI( & ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& I_power(1),J_power(1),K_power(1),L_power(1), & I_power(2),J_power(2),K_power(2),L_power(2), & I_power(3),J_power(3),K_power(3),L_power(3)) ao_two_e_integral = ao_two_e_integral + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p endif endif end ! --- double precision function ao_two_e_integral_schwartz_accel(i,j,k,l) implicit none BEGIN_DOC ! integral of the AO basis <ik|jl> or (ij|kl) ! i(r1) j(r1) 1/r12 k(r2) l(r2) END_DOC integer,intent(in) :: i,j,k,l integer :: p,q,r,s double precision :: I_center(3),J_center(3),K_center(3),L_center(3) integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3) double precision :: integral include 'utils/constants.include.F' double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq integer :: iorder_p(3), iorder_q(3) double precision, allocatable :: schwartz_kl(:,:) double precision :: schwartz_ij dim1 = n_pt_max_integrals num_i = ao_nucl(i) num_j = ao_nucl(j) num_k = ao_nucl(k) num_l = ao_nucl(l) ao_two_e_integral_schwartz_accel = 0.d0 double precision :: thr thr = ao_integrals_threshold*ao_integrals_threshold allocate(schwartz_kl(0:ao_prim_num(l),0:ao_prim_num(k))) if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) I_center(p) = nucl_coord(num_i,p) J_center(p) = nucl_coord(num_j,p) K_center(p) = nucl_coord(num_k,p) L_center(p) = nucl_coord(num_l,p) enddo schwartz_kl(0,0) = 0.d0 do r = 1, ao_prim_num(k) coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k) schwartz_kl(0,r) = 0.d0 do s = 1, ao_prim_num(l) coef2 = coef1 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l) call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & K_power,L_power,K_center,L_center,dim1) q_inv = 1.d0/qq schwartz_kl(s,r) = general_primitive_integral(dim1, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q) & * coef2 schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r)) enddo schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0)) enddo do p = 1, ao_prim_num(i) double precision :: coef1 coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) double precision :: coef2 coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) double precision :: p_inv,q_inv call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,& ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), & I_power,J_power,I_center,J_center,dim1) p_inv = 1.d0/pp schwartz_ij = general_primitive_integral(dim1, & P_new,P_center,fact_p,pp,p_inv,iorder_p, & P_new,P_center,fact_p,pp,p_inv,iorder_p) * & coef2*coef2 if (schwartz_kl(0,0)*schwartz_ij < thr) then cycle endif do r = 1, ao_prim_num(k) if (schwartz_kl(0,r)*schwartz_ij < thr) then cycle endif double precision :: coef3 coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) double precision :: coef4 if (schwartz_kl(s,r)*schwartz_ij < thr) then cycle endif coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) double precision :: general_primitive_integral call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & K_power,L_power,K_center,L_center,dim1) q_inv = 1.d0/qq integral = general_primitive_integral(dim1, & P_new,P_center,fact_p,pp,p_inv,iorder_p, & Q_new,Q_center,fact_q,qq,q_inv,iorder_q) ao_two_e_integral_schwartz_accel = ao_two_e_integral_schwartz_accel + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p else do p = 1, 3 I_power(p) = ao_power(i,p) J_power(p) = ao_power(j,p) K_power(p) = ao_power(k,p) L_power(p) = ao_power(l,p) enddo double precision :: ERI schwartz_kl(0,0) = 0.d0 do r = 1, ao_prim_num(k) coef1 = ao_coef_normalized_ordered_transp(r,k)*ao_coef_normalized_ordered_transp(r,k) schwartz_kl(0,r) = 0.d0 do s = 1, ao_prim_num(l) coef2 = coef1*ao_coef_normalized_ordered_transp(s,l)*ao_coef_normalized_ordered_transp(s,l) schwartz_kl(s,r) = ERI( & ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& K_power(1),L_power(1),K_power(1),L_power(1), & K_power(2),L_power(2),K_power(2),L_power(2), & K_power(3),L_power(3),K_power(3),L_power(3)) * & coef2 schwartz_kl(0,r) = max(schwartz_kl(0,r),schwartz_kl(s,r)) enddo schwartz_kl(0,0) = max(schwartz_kl(0,r),schwartz_kl(0,0)) enddo do p = 1, ao_prim_num(i) coef1 = ao_coef_normalized_ordered_transp(p,i) do q = 1, ao_prim_num(j) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) schwartz_ij = ERI( & ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),& I_power(1),J_power(1),I_power(1),J_power(1), & I_power(2),J_power(2),I_power(2),J_power(2), & I_power(3),J_power(3),I_power(3),J_power(3))*coef2*coef2 if (schwartz_kl(0,0)*schwartz_ij < thr) then cycle endif do r = 1, ao_prim_num(k) if (schwartz_kl(0,r)*schwartz_ij < thr) then cycle endif coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) do s = 1, ao_prim_num(l) if (schwartz_kl(s,r)*schwartz_ij < thr) then cycle endif coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) integral = ERI( & ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& I_power(1),J_power(1),K_power(1),L_power(1), & I_power(2),J_power(2),K_power(2),L_power(2), & I_power(3),J_power(3),K_power(3),L_power(3)) ao_two_e_integral_schwartz_accel = ao_two_e_integral_schwartz_accel + coef4 * integral enddo ! s enddo ! r enddo ! q enddo ! p endif deallocate (schwartz_kl) end integer function ao_l4(i,j,k,l) implicit none BEGIN_DOC ! Computes the product of l values of i,j,k,and l END_DOC integer, intent(in) :: i,j,k,l ao_l4 = ao_l(i)*ao_l(j)*ao_l(k)*ao_l(l) end subroutine compute_ao_two_e_integrals(j,k,l,sze,buffer_value) implicit none use map_module BEGIN_DOC ! Compute AO 1/r12 integrals for all i and fixed j,k,l END_DOC include 'utils/constants.include.F' integer, intent(in) :: j,k,l,sze real(integral_kind), intent(out) :: buffer_value(sze) double precision :: ao_two_e_integral integer :: i logical, external :: ao_one_e_integral_zero logical, external :: ao_two_e_integral_zero if (ao_one_e_integral_zero(j,l)) then buffer_value = 0._integral_kind return endif do i = 1, ao_num if (ao_two_e_integral_zero(i,j,k,l)) then buffer_value(i) = 0._integral_kind cycle endif !DIR$ FORCEINLINE buffer_value(i) = ao_two_e_integral(i,k,j,l) enddo end BEGIN_PROVIDER [ logical, ao_two_e_integrals_in_map ] implicit none use f77_zmq use map_module BEGIN_DOC ! Map of Atomic integrals ! i(r1) j(r2) 1/r12 k(r1) l(r2) END_DOC integer :: i,j,k,l double precision :: ao_two_e_integral,cpu_1,cpu_2, wall_1, wall_2 double precision :: integral, wall_0 include 'utils/constants.include.F' ! For integrals file integer(key_kind),allocatable :: buffer_i(:) integer,parameter :: size_buffer = 1024*64 real(integral_kind),allocatable :: buffer_value(:) integer :: n_integrals, rc integer :: kk, m, j1, i1, lmax character*(64) :: fmt double precision :: map_mb PROVIDE read_ao_two_e_integrals io_ao_two_e_integrals if (read_ao_two_e_integrals) then print*,'Reading the AO integrals' call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map) print*, 'AO integrals provided' ao_two_e_integrals_in_map = .True. else print*, 'Providing the AO integrals' call wall_time(wall_0) call wall_time(wall_1) call cpu_time(cpu_1) if (.True.) then ! Avoid openMP integral = ao_two_e_integral(1,1,1,1) endif integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'ao_integrals') character(len=:), allocatable :: task allocate(character(len=ao_num*12) :: task) write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))' do l=1,ao_num write(task,fmt) (i,l, i=1,l) integer, external :: add_task_to_taskserver if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task)) == -1) then stop 'Unable to add task to server' endif enddo deallocate(task) integer, external :: zmq_set_running if (zmq_set_running(zmq_to_qp_run_socket) == -1) then print *, irp_here, ': Failed in zmq_set_running' endif PROVIDE nproc !$OMP PARALLEL DEFAULT(shared) private(i) num_threads(nproc+1) i = omp_get_thread_num() if (i==0) then call ao_two_e_integrals_in_map_collector(zmq_socket_pull) else call ao_two_e_integrals_in_map_slave_inproc(i) endif !$OMP END PARALLEL call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'ao_integrals') print*, 'Sorting the map' call map_sort(ao_integrals_map) call cpu_time(cpu_2) call wall_time(wall_2) integer(map_size_kind) :: get_ao_map_size, ao_map_size ao_map_size = get_ao_map_size() print*, 'AO integrals provided:' print*, ' Size of AO map : ', map_mb(ao_integrals_map) ,'MB' print*, ' Number of AO integrals :', ao_map_size print*, ' cpu time :',cpu_2 - cpu_1, 's' print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )' ao_two_e_integrals_in_map = .True. if (write_ao_two_e_integrals.and.mpi_master) then call ezfio_set_work_empty(.False.) call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map) call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read') endif endif END_PROVIDER ! --- BEGIN_PROVIDER [ double precision, ao_two_e_integral_schwartz, (ao_num, ao_num) ] BEGIN_DOC ! Needed to compute Schwartz inequalities END_DOC implicit none integer :: i, k double precision :: ao_two_e_integral,cpu_1,cpu_2, wall_1, wall_2 ao_two_e_integral_schwartz(1,1) = ao_two_e_integral(1,1,1,1) !$OMP PARALLEL DO PRIVATE(i,k) & !$OMP DEFAULT(NONE) & !$OMP SHARED (ao_num,ao_two_e_integral_schwartz) & !$OMP SCHEDULE(guided) do i=1,ao_num do k=1,i ao_two_e_integral_schwartz(i,k) = dsqrt(ao_two_e_integral(i,i,k,k)) ao_two_e_integral_schwartz(k,i) = ao_two_e_integral_schwartz(i,k) enddo enddo !$OMP END PARALLEL DO END_PROVIDER ! --- double precision function general_primitive_integral(dim, & P_new,P_center,fact_p,p,p_inv,iorder_p, & Q_new,Q_center,fact_q,q,q_inv,iorder_q) implicit none BEGIN_DOC ! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives END_DOC integer,intent(in) :: dim include 'utils/constants.include.F' double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv integer, intent(in) :: iorder_p(3) integer, intent(in) :: iorder_q(3) double precision :: r_cut,gama_r_cut,rho,dist double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim) integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz double precision :: bla integer :: ix,iy,iz,jx,jy,jz,i double precision :: a,b,c,d,e,f,accu,pq,const double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2 integer :: n_pt_tmp,n_pt_out, iorder double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim) general_primitive_integral = 0.d0 !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly ! Gaussian Product ! ---------------- pq = p_inv*0.5d0*q_inv pq_inv = 0.5d0/(p+q) p10_1 = q*pq ! 1/(2p) p01_1 = p*pq ! 1/(2q) pq_inv_2 = pq_inv+pq_inv p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p) p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq) accu = 0.d0 iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1) do ix=0,iorder Ix_pol(ix) = 0.d0 enddo n_Ix = 0 do ix = 0, iorder_p(1) if (abs(P_new(ix,1)) < thresh) cycle a = P_new(ix,1) do jx = 0, iorder_q(1) d = a*Q_new(jx,1) if (abs(d) < thresh) cycle !DIR$ FORCEINLINE call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx) !DIR$ FORCEINLINE call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix) enddo enddo if (n_Ix == -1) then return endif iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2) do ix=0, iorder Iy_pol(ix) = 0.d0 enddo n_Iy = 0 do iy = 0, iorder_p(2) if (abs(P_new(iy,2)) > thresh) then b = P_new(iy,2) do jy = 0, iorder_q(2) e = b*Q_new(jy,2) if (abs(e) < thresh) cycle !DIR$ FORCEINLINE call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny) !DIR$ FORCEINLINE call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy) enddo endif enddo if (n_Iy == -1) then return endif iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3) do ix=0,iorder Iz_pol(ix) = 0.d0 enddo n_Iz = 0 do iz = 0, iorder_p(3) if (abs(P_new(iz,3)) > thresh) then c = P_new(iz,3) do jz = 0, iorder_q(3) f = c*Q_new(jz,3) if (abs(f) < thresh) cycle !DIR$ FORCEINLINE call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz) !DIR$ FORCEINLINE call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz) enddo endif enddo if (n_Iz == -1) then return endif rho = p*q *pq_inv_2 dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + & (P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + & (P_center(3) - Q_center(3))*(P_center(3) - Q_center(3)) const = dist*rho n_pt_tmp = n_Ix+n_Iy do i=0,n_pt_tmp d_poly(i)=0.d0 enddo ! call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp) integer :: ib, ic if (ior(n_Ix,n_Iy) >= 0) then do ib=0,n_Ix do ic = 0,n_Iy d_poly(ib+ic) = d_poly(ib+ic) + Iy_pol(ic) * Ix_pol(ib) enddo enddo do n_pt_tmp = n_Ix+n_Iy, 0, -1 if (d_poly(n_pt_tmp) /= 0.d0) exit enddo endif if (n_pt_tmp == -1) then return endif n_pt_out = n_pt_tmp+n_Iz do i=0,n_pt_out d1(i)=0.d0 enddo ! call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out) if (ior(n_pt_tmp,n_Iz) >= 0) then ! Bottleneck here do ib=0,n_pt_tmp do ic = 0,n_Iz d1(ib+ic) = d1(ib+ic) + Iz_pol(ic) * d_poly(ib) enddo enddo do n_pt_out = n_pt_tmp+n_Iz, 0, -1 if (d1(n_pt_out) /= 0.d0) exit enddo endif double precision :: rint_sum accu = accu + rint_sum(n_pt_out,const,d1) general_primitive_integral = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p+q) end double precision function ERI(alpha,beta,delta,gama,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z) implicit none BEGIN_DOC ! ATOMIC PRIMTIVE two-electron integral between the 4 primitives :: ! primitive_1 = x1**(a_x) y1**(a_y) z1**(a_z) exp(-alpha * r1**2) ! primitive_2 = x1**(b_x) y1**(b_y) z1**(b_z) exp(- beta * r1**2) ! primitive_3 = x2**(c_x) y2**(c_y) z2**(c_z) exp(-delta * r2**2) ! primitive_4 = x2**(d_x) y2**(d_y) z2**(d_z) exp(- gama * r2**2) END_DOC double precision, intent(in) :: delta,gama,alpha,beta integer, intent(in) :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z integer :: a_x_2,b_x_2,c_x_2,d_x_2,a_y_2,b_y_2,c_y_2,d_y_2,a_z_2,b_z_2,c_z_2,d_z_2 integer :: i,j,k,l,n_pt integer :: n_pt_sup double precision :: p,q,denom,coeff double precision :: I_f integer :: nx,ny,nz include 'utils/constants.include.F' nx = a_x+b_x+c_x+d_x if(iand(nx,1) == 1) then ERI = 0.d0 return endif ny = a_y+b_y+c_y+d_y if(iand(ny,1) == 1) then ERI = 0.d0 return endif nz = a_z+b_z+c_z+d_z if(iand(nz,1) == 1) then ERI = 0.d0 return endif ASSERT (alpha >= 0.d0) ASSERT (beta >= 0.d0) ASSERT (delta >= 0.d0) ASSERT (gama >= 0.d0) p = alpha + beta q = delta + gama ASSERT (p+q >= 0.d0) n_pt = shiftl( nx+ny+nz,1 ) coeff = pi_5_2 / (p * q * dsqrt(p+q)) if (n_pt == 0) then ERI = coeff return endif call integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt) ERI = I_f * coeff end subroutine integrale_new(I_f,a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z,p,q,n_pt) BEGIN_DOC ! Calculates the integral of the polynomial : ! ! $I_{x_1}(a_x+b_x,c_x+d_x,p,q) \, I_{x_1}(a_y+b_y,c_y+d_y,p,q) \, I_{x_1}(a_z+b_z,c_z+d_z,p,q)$ ! in $( 0 ; 1)$ END_DOC implicit none include 'utils/constants.include.F' double precision :: p,q integer :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z integer :: i, n_pt, j double precision :: I_f, pq_inv, p10_1, p10_2, p01_1, p01_2,rho,pq_inv_2 integer :: ix,iy,iz, jx,jy,jz, sx,sy,sz j = shiftr(n_pt,1) ASSERT (n_pt > 1) pq_inv = 0.5d0/(p+q) pq_inv_2 = pq_inv + pq_inv p10_1 = 0.5d0/p p01_1 = 0.5d0/q p10_2 = 0.5d0 * q /(p * q + p * p) p01_2 = 0.5d0 * p /(q * q + q * p) double precision :: B00(n_pt_max_integrals) double precision :: B10(n_pt_max_integrals), B01(n_pt_max_integrals) double precision :: t1(n_pt_max_integrals), t2(n_pt_max_integrals) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: t1, t2, B10, B01, B00 ix = a_x+b_x jx = c_x+d_x iy = a_y+b_y jy = c_y+d_y iz = a_z+b_z jz = c_z+d_z sx = ix+jx sy = iy+jy sz = iz+jz do i = 1,n_pt B10(i) = p10_1 - gauleg_t2(i,j)* p10_2 B01(i) = p01_1 - gauleg_t2(i,j)* p01_2 B00(i) = gauleg_t2(i,j)*pq_inv enddo if (sx > 0) then call I_x1_new(ix,jx,B10,B01,B00,t1,n_pt) else do i = 1,n_pt t1(i) = 1.d0 enddo endif if (sy > 0) then call I_x1_new(iy,jy,B10,B01,B00,t2,n_pt) do i = 1,n_pt t1(i) = t1(i)*t2(i) enddo endif if (sz > 0) then call I_x1_new(iz,jz,B10,B01,B00,t2,n_pt) do i = 1,n_pt t1(i) = t1(i)*t2(i) enddo endif I_f= 0.d0 do i = 1,n_pt I_f += gauleg_w(i,j)*t1(i) enddo end recursive subroutine I_x1_new(a,c,B_10,B_01,B_00,res,n_pt) BEGIN_DOC ! recursive function involved in the two-electron integral END_DOC implicit none include 'utils/constants.include.F' integer, intent(in) :: a,c,n_pt double precision, intent(in) :: B_10(n_pt_max_integrals),B_01(n_pt_max_integrals),B_00(n_pt_max_integrals) double precision, intent(out) :: res(n_pt_max_integrals) double precision :: res2(n_pt_max_integrals) integer :: i if(c<0)then do i=1,n_pt res(i) = 0.d0 enddo else if (a==0) then call I_x2_new(c,B_10,B_01,B_00,res,n_pt) else if (a==1) then call I_x2_new(c-1,B_10,B_01,B_00,res,n_pt) do i=1,n_pt res(i) = c * B_00(i) * res(i) enddo else call I_x1_new(a-2,c,B_10,B_01,B_00,res,n_pt) call I_x1_new(a-1,c-1,B_10,B_01,B_00,res2,n_pt) do i=1,n_pt res(i) = (a-1) * B_10(i) * res(i) & + c * B_00(i) * res2(i) enddo endif end recursive subroutine I_x2_new(c,B_10,B_01,B_00,res,n_pt) implicit none BEGIN_DOC ! recursive function involved in the two-electron integral END_DOC include 'utils/constants.include.F' integer, intent(in) :: c, n_pt double precision, intent(in) :: B_10(n_pt_max_integrals),B_01(n_pt_max_integrals),B_00(n_pt_max_integrals) double precision, intent(out) :: res(n_pt_max_integrals) integer :: i if(c==1)then do i=1,n_pt res(i) = 0.d0 enddo elseif(c==0) then do i=1,n_pt res(i) = 1.d0 enddo else call I_x1_new(0,c-2,B_10,B_01,B_00,res,n_pt) do i=1,n_pt res(i) = (c-1) * B_01(i) * res(i) enddo endif end integer function n_pt_sup(a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z) implicit none BEGIN_DOC ! Returns the upper boundary of the degree of the polynomial involved in the ! two-electron integral : ! ! $I_x(a_x,b_x,c_x,d_x) \, I_y(a_y,b_y,c_y,d_y) \, I_z(a_z,b_z,c_z,d_z)$ END_DOC integer :: a_x,b_x,c_x,d_x,a_y,b_y,c_y,d_y,a_z,b_z,c_z,d_z n_pt_sup = shiftl( a_x+b_x+c_x+d_x + a_y+b_y+c_y+d_y + a_z+b_z+c_z+d_z,1 ) end subroutine give_polynom_mult_center_x(P_center,Q_center,a_x,d_x,p,q,n_pt_in,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,d,n_pt_out) implicit none BEGIN_DOC ! subroutine that returns the explicit polynom in term of the "t" ! variable of the following polynomw : ! ! $I_{x_1}(a_x,d_x,p,q) \, I_{x_1}(a_y,d_y,p,q) \ I_{x_1}(a_z,d_z,p,q)$ END_DOC integer, intent(in) :: n_pt_in integer,intent(out) :: n_pt_out integer, intent(in) :: a_x,d_x double precision, intent(in) :: P_center, Q_center double precision, intent(in) :: p,q,pq_inv,p10_1,p01_1,p10_2,p01_2,pq_inv_2 include 'utils/constants.include.F' double precision,intent(out) :: d(0:max_dim) double precision :: accu accu = 0.d0 ASSERT (n_pt_in >= 0) ! pq_inv = 0.5d0/(p+q) ! pq_inv_2 = 1.d0/(p+q) ! p10_1 = 0.5d0/p ! p01_1 = 0.5d0/q ! p10_2 = 0.5d0 * q /(p * q + p * p) ! p01_2 = 0.5d0 * p /(q * q + q * p) double precision :: B10(0:2), B01(0:2), B00(0:2),C00(0:2),D00(0:2) B10(0) = p10_1 B10(1) = 0.d0 B10(2) = - p10_2 ! B10 = p01_1 - t**2 * p10_2 B01(0) = p01_1 B01(1) = 0.d0 B01(2) = - p01_2 ! B01 = p01_1- t**2 * pq_inv B00(0) = 0.d0 B00(1) = 0.d0 B00(2) = pq_inv ! B00 = t**2 * pq_inv do i = 0,n_pt_in d(i) = 0.d0 enddo integer :: n_pt1,dim,i n_pt1 = n_pt_in ! C00 = -q/(p+q)*(Px-Qx) * t^2 C00(0) = 0.d0 C00(1) = 0.d0 C00(2) = -q*(P_center-Q_center) * pq_inv_2 ! D00 = -p/(p+q)*(Px-Qx) * t^2 D00(0) = 0.d0 D00(1) = 0.d0 D00(2) = -p*(Q_center-P_center) * pq_inv_2 !D00(2) = -p*(Q_center(1)-P_center(1)) /(p+q) !DIR$ FORCEINLINE call I_x1_pol_mult(a_x,d_x,B10,B01,B00,C00,D00,d,n_pt1,n_pt_in) n_pt_out = n_pt1 if(n_pt1<0)then n_pt_out = -1 do i = 0,n_pt_in d(i) = 0.d0 enddo return endif end subroutine I_x1_pol_mult(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) implicit none BEGIN_DOC ! Recursive function involved in the two-electron integral END_DOC integer , intent(in) :: n_pt_in include 'utils/constants.include.F' double precision,intent(inout) :: d(0:max_dim) integer,intent(inout) :: nd integer, intent(in) :: a,c double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2) if( (c>=0).and.(nd>=0) )then if (a==1) then call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) else if (a==2) then call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) else if (a>2) then call I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) else ! a == 0 if( c==0 )then nd = 0 d(0) = 1.d0 return endif call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) endif else nd = -1 endif end recursive subroutine I_x1_pol_mult_recurs(a,c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) implicit none BEGIN_DOC ! Recursive function involved in the two-electron integral END_DOC integer , intent(in) :: n_pt_in include 'utils/constants.include.F' double precision,intent(inout) :: d(0:max_dim) integer,intent(inout) :: nd integer, intent(in) :: a,c double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2) double precision :: X(0:max_dim) double precision :: Y(0:max_dim) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y integer :: nx, ix,iy,ny,ib ASSERT (a>2) !DIR$ LOOP COUNT(8) do ix=0,n_pt_in X(ix) = 0.d0 enddo nx = 0 if (a==3) then call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) else if (a==4) then call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) else ASSERT (a>=5) call I_x1_pol_mult_recurs(a-2,c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) endif !DIR$ LOOP COUNT(8) do ix=0,nx X(ix) *= dble(a-1) enddo ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(X,nx,B_10,d,nd) if (nx >= 0) then select case (nx) case (0) d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(1) * X(0) d(2) = d(2) + B_10(2) * X(0) case (1) d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0) d(2) = d(2) + B_10(1) * X(1) + B_10(2) * X(0) d(3) = d(3) + B_10(2) * X(1) case (2) d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0) d(2) = d(2) + B_10(0) * X(2) + B_10(1) * X(1) + B_10(2) * X(0) d(3) = d(3) + B_10(1) * X(2) + B_10(2) * X(1) d(4) = d(4) + B_10(2) * X(2) case default d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0) do ib=2,nx d(ib) = d(ib) + B_10(0) * X(ib) + B_10(1) * X(ib-1) + B_10(2) * X(ib-2) enddo d(nx+1) = d(nx+1) + B_10(1) * X(nx) + B_10(2) * X(nx-1) d(nx+2) = d(nx+2) + B_10(2) * X(nx) end select do nd = nx+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif nx = nd !DIR$ LOOP COUNT(8) do ix=0,n_pt_in X(ix) = 0.d0 enddo if (c>0) then if (a==3) then call I_x1_pol_mult_a2(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) else ASSERT(a >= 4) call I_x1_pol_mult_recurs(a-1,c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) endif if (c>1) then !DIR$ LOOP COUNT(8) do ix=0,nx X(ix) *= c enddo endif ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(X,nx,B_00,d,nd) if(nx >= 0) then select case (nx) case (0) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(1) * X(0) d(2) = d(2) + B_00(2) * X(0) case (1) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) d(2) = d(2) + B_00(1) * X(1) + B_00(2) * X(0) d(3) = d(3) + B_00(2) * X(1) case (2) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) d(2) = d(2) + B_00(0) * X(2) + B_00(1) * X(1) + B_00(2) * X(0) d(3) = d(3) + B_00(1) * X(2) + B_00(2) * X(1) d(4) = d(4) + B_00(2) * X(2) case default d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) do ib=2,nx d(ib) = d(ib) + B_00(0) * X(ib) + B_00(1) * X(ib-1) + B_00(2) * X(ib-2) enddo d(nx+1) = d(nx+1) + B_00(1) * X(nx) + B_00(2) * X(nx-1) d(nx+2) = d(nx+2) + B_00(2) * X(nx) end select do nd = nx+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif endif ny=0 !DIR$ LOOP COUNT(8) do ix=0,n_pt_in Y(ix) = 0.d0 enddo ASSERT(a > 2) if (a==3) then call I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in) else ASSERT(a >= 4) call I_x1_pol_mult_recurs(a-1,c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in) endif ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(Y,ny,C_00,d,nd) if(ny >= 0) then select case (ny) case (0) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(2) * Y(0) case (1) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(1) * Y(1) + C_00(2) * Y(0) d(3) = d(3) + C_00(2) * Y(1) case (2) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(0) * Y(2) + C_00(1) * Y(1) + C_00(2) * Y(0) d(3) = d(3) + C_00(1) * Y(2) + C_00(2) * Y(1) d(4) = d(4) + C_00(2) * Y(2) case default d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) do ib=2,ny d(ib) = d(ib) + C_00(0) * Y(ib) + C_00(1) * Y(ib-1) + C_00(2) * Y(ib-2) enddo d(ny+1) = d(ny+1) + C_00(1) * Y(ny) + C_00(2) * Y(ny-1) d(ny+2) = d(ny+2) + C_00(2) * Y(ny) end select do nd = ny+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif end recursive subroutine I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) implicit none BEGIN_DOC ! Recursive function involved in the two-electron integral END_DOC integer , intent(in) :: n_pt_in include 'utils/constants.include.F' double precision,intent(inout) :: d(0:max_dim) integer,intent(inout) :: nd integer, intent(in) :: c double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2) double precision :: X(0:max_dim) double precision :: Y(0:max_dim) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y integer :: nx, ix,iy,ny,ib if( (c<0).or.(nd<0) )then nd = -1 return endif nx = nd !DIR$ LOOP COUNT(8) do ix=0,n_pt_in X(ix) = 0.d0 enddo call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) if (c>1) then !DIR$ LOOP COUNT(8) do ix=0,nx X(ix) *= dble(c) enddo endif ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(X,nx,B_00,d,nd) if(nx >= 0) then select case (nx) case (0) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(1) * X(0) d(2) = d(2) + B_00(2) * X(0) case (1) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) d(2) = d(2) + B_00(1) * X(1) + B_00(2) * X(0) d(3) = d(3) + B_00(2) * X(1) case (2) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) d(2) = d(2) + B_00(0) * X(2) + B_00(1) * X(1) + B_00(2) * X(0) d(3) = d(3) + B_00(1) * X(2) + B_00(2) * X(1) d(4) = d(4) + B_00(2) * X(2) case default d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) do ib=2,nx d(ib) = d(ib) + B_00(0) * X(ib) + B_00(1) * X(ib-1) + B_00(2) * X(ib-2) enddo d(nx+1) = d(nx+1) + B_00(1) * X(nx) + B_00(2) * X(nx-1) d(nx+2) = d(nx+2) + B_00(2) * X(nx) end select do nd = nx+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif ny=0 !DIR$ LOOP COUNT(8) do ix=0,n_pt_in Y(ix) = 0.d0 enddo call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(Y,ny,C_00,d,nd) if(ny >= 0) then select case (ny) case (0) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(2) * Y(0) case (1) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(1) * Y(1) + C_00(2) * Y(0) d(3) = d(3) + C_00(2) * Y(1) case (2) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(0) * Y(2) + C_00(1) * Y(1) + C_00(2) * Y(0) d(3) = d(3) + C_00(1) * Y(2) + C_00(2) * Y(1) d(4) = d(4) + C_00(2) * Y(2) case default d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) do ib=2,ny d(ib) = d(ib) + C_00(0) * Y(ib) + C_00(1) * Y(ib-1) + C_00(2) * Y(ib-2) enddo d(ny+1) = d(ny+1) + C_00(1) * Y(ny) + C_00(2) * Y(ny-1) d(ny+2) = d(ny+2) + C_00(2) * Y(ny) end select do nd = ny+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif end recursive subroutine I_x1_pol_mult_a2(c,B_10,B_01,B_00,C_00,D_00,d,nd,n_pt_in) implicit none BEGIN_DOC ! Recursive function involved in the two-electron integral END_DOC integer , intent(in) :: n_pt_in include 'utils/constants.include.F' double precision,intent(inout) :: d(0:max_dim) integer,intent(inout) :: nd integer, intent(in) :: c double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2) double precision :: X(0:max_dim) double precision :: Y(0:max_dim) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X,Y integer :: nx, ix,iy,ny,ib !DIR$ LOOP COUNT(8) do ix=0,n_pt_in X(ix) = 0.d0 enddo nx = 0 call I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(X,nx,B_10,d,nd) if(nx >= 0) then select case (nx) case (0) d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(1) * X(0) d(2) = d(2) + B_10(2) * X(0) case (1) d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0) d(2) = d(2) + B_10(1) * X(1) + B_10(2) * X(0) d(3) = d(3) + B_10(2) * X(1) case (2) d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0) d(2) = d(2) + B_10(0) * X(2) + B_10(1) * X(1) + B_10(2) * X(0) d(3) = d(3) + B_10(1) * X(2) + B_10(2) * X(1) d(4) = d(4) + B_10(2) * X(2) case default d(0) = d(0) + B_10(0) * X(0) d(1) = d(1) + B_10(0) * X(1) + B_10(1) * X(0) do ib=2,nx d(ib) = d(ib) + B_10(0) * X(ib) + B_10(1) * X(ib-1) + B_10(2) * X(ib-2) enddo d(nx+1) = d(nx+1) + B_10(1) * X(nx) + B_10(2) * X(nx-1) d(nx+2) = d(nx+2) + B_10(2) * X(nx) end select do nd = nx+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif nx = nd !DIR$ LOOP COUNT(8) do ix=0,n_pt_in X(ix) = 0.d0 enddo !DIR$ FORCEINLINE call I_x1_pol_mult_a1(c-1,B_10,B_01,B_00,C_00,D_00,X,nx,n_pt_in) if (c>1) then !DIR$ LOOP COUNT(8) do ix=0,nx X(ix) *= dble(c) enddo endif ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(X,nx,B_00,d,nd) if(nx >= 0) then select case (nx) case (0) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(1) * X(0) d(2) = d(2) + B_00(2) * X(0) case (1) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) d(2) = d(2) + B_00(1) * X(1) + B_00(2) * X(0) d(3) = d(3) + B_00(2) * X(1) case (2) d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) d(2) = d(2) + B_00(0) * X(2) + B_00(1) * X(1) + B_00(2) * X(0) d(3) = d(3) + B_00(1) * X(2) + B_00(2) * X(1) d(4) = d(4) + B_00(2) * X(2) case default d(0) = d(0) + B_00(0) * X(0) d(1) = d(1) + B_00(0) * X(1) + B_00(1) * X(0) do ib=2,nx d(ib) = d(ib) + B_00(0) * X(ib) + B_00(1) * X(ib-1) + B_00(2) * X(ib-2) enddo d(nx+1) = d(nx+1) + B_00(1) * X(nx) + B_00(2) * X(nx-1) d(nx+2) = d(nx+2) + B_00(2) * X(nx) end select do nd = nx+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif ny=0 !DIR$ LOOP COUNT(8) do ix=0,n_pt_in Y(ix) = 0.d0 enddo !DIR$ FORCEINLINE call I_x1_pol_mult_a1(c,B_10,B_01,B_00,C_00,D_00,Y,ny,n_pt_in) ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(Y,ny,C_00,d,nd) if(ny >= 0) then select case (ny) case (0) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(2) * Y(0) case (1) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(1) * Y(1) + C_00(2) * Y(0) d(3) = d(3) + C_00(2) * Y(1) case (2) d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) d(2) = d(2) + C_00(0) * Y(2) + C_00(1) * Y(1) + C_00(2) * Y(0) d(3) = d(3) + C_00(1) * Y(2) + C_00(2) * Y(1) d(4) = d(4) + C_00(2) * Y(2) case default d(0) = d(0) + C_00(0) * Y(0) d(1) = d(1) + C_00(0) * Y(1) + C_00(1) * Y(0) do ib=2,ny d(ib) = d(ib) + C_00(0) * Y(ib) + C_00(1) * Y(ib-1) + C_00(2) * Y(ib-2) enddo d(ny+1) = d(ny+1) + C_00(1) * Y(ny) + C_00(2) * Y(ny-1) d(ny+2) = d(ny+2) + C_00(2) * Y(ny) end select do nd = ny+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif end recursive subroutine I_x2_pol_mult(c,B_10,B_01,B_00,C_00,D_00,d,nd,dim) implicit none BEGIN_DOC ! Recursive function involved in the two-electron integral END_DOC integer , intent(in) :: dim include 'utils/constants.include.F' double precision :: d(0:max_dim) integer,intent(inout) :: nd integer, intent(in) :: c double precision, intent(in) :: B_10(0:2),B_01(0:2),B_00(0:2),C_00(0:2),D_00(0:2) integer :: nx, ix,ny double precision :: X(0:max_dim),Y(0:max_dim) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y integer :: i, ib select case (c) case (0) nd = 0 d(0) = 1.d0 return case (:-1) nd = -1 return case (1) nd = 2 d(0) = D_00(0) d(1) = D_00(1) d(2) = D_00(2) return case (2) nd = 2 d(0) = B_01(0) d(1) = B_01(1) d(2) = B_01(2) ny = 2 Y(0) = D_00(0) Y(1) = D_00(1) Y(2) = D_00(2) ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(Y,ny,D_00,d,nd) if(ny >= 0) then select case (ny) case (0) d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(1) * Y(0) d(2) = d(2) + D_00(2) * Y(0) case (1) d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0) d(2) = d(2) + D_00(1) * Y(1) + D_00(2) * Y(0) d(3) = d(3) + D_00(2) * Y(1) case (2) d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0) d(2) = d(2) + D_00(0) * Y(2) + D_00(1) * Y(1) + D_00(2) * Y(0) d(3) = d(3) + D_00(1) * Y(2) + D_00(2) * Y(1) d(4) = d(4) + D_00(2) * Y(2) case default d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0) do ib=2,ny d(ib) = d(ib) + D_00(0) * Y(ib) + D_00(1) * Y(ib-1) + D_00(2) * Y(ib-2) enddo d(ny+1) = d(ny+1) + D_00(1) * Y(ny) + D_00(2) * Y(ny-1) d(ny+2) = d(ny+2) + D_00(2) * Y(ny) end select do nd = ny+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif return case default !DIR$ LOOP COUNT(6) do ix=0,c+c X(ix) = 0.d0 enddo nx = 0 call I_x2_pol_mult(c-2,B_10,B_01,B_00,C_00,D_00,X,nx,dim) !DIR$ LOOP COUNT(6) do ix=0,nx X(ix) *= dble(c-1) enddo ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(X,nx,B_01,d,nd) if(nx >= 0) then select case (nx) case (0) d(0) = d(0) + B_01(0) * X(0) d(1) = d(1) + B_01(1) * X(0) d(2) = d(2) + B_01(2) * X(0) case (1) d(0) = d(0) + B_01(0) * X(0) d(1) = d(1) + B_01(0) * X(1) + B_01(1) * X(0) d(2) = d(2) + B_01(1) * X(1) + B_01(2) * X(0) d(3) = d(3) + B_01(2) * X(1) case (2) d(0) = d(0) + B_01(0) * X(0) d(1) = d(1) + B_01(0) * X(1) + B_01(1) * X(0) d(2) = d(2) + B_01(0) * X(2) + B_01(1) * X(1) + B_01(2) * X(0) d(3) = d(3) + B_01(1) * X(2) + B_01(2) * X(1) d(4) = d(4) + B_01(2) * X(2) case default d(0) = d(0) + B_01(0) * X(0) d(1) = d(1) + B_01(0) * X(1) + B_01(1) * X(0) do ib=2,nx d(ib) = d(ib) + B_01(0) * X(ib) + B_01(1) * X(ib-1) + B_01(2) * X(ib-2) enddo d(nx+1) = d(nx+1) + B_01(1) * X(nx) + B_01(2) * X(nx-1) d(nx+2) = d(nx+2) + B_01(2) * X(nx) end select do nd = nx+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif ny = 0 !DIR$ LOOP COUNT(6) do ix=0,c+c Y(ix) = 0.d0 enddo call I_x2_pol_mult(c-1,B_10,B_01,B_00,C_00,D_00,Y,ny,dim) ! !DIR$ FORCEINLINE ! call multiply_poly_c2_inline_2e(Y,ny,D_00,d,nd) if(ny >= 0) then select case (ny) case (0) d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(1) * Y(0) d(2) = d(2) + D_00(2) * Y(0) case (1) d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0) d(2) = d(2) + D_00(1) * Y(1) + D_00(2) * Y(0) d(3) = d(3) + D_00(2) * Y(1) case (2) d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0) d(2) = d(2) + D_00(0) * Y(2) + D_00(1) * Y(1) + D_00(2) * Y(0) d(3) = d(3) + D_00(1) * Y(2) + D_00(2) * Y(1) d(4) = d(4) + D_00(2) * Y(2) case default d(0) = d(0) + D_00(0) * Y(0) d(1) = d(1) + D_00(0) * Y(1) + D_00(1) * Y(0) do ib=2,ny d(ib) = d(ib) + D_00(0) * Y(ib) + D_00(1) * Y(ib-1) + D_00(2) * Y(ib-2) enddo d(ny+1) = d(ny+1) + D_00(1) * Y(ny) + D_00(2) * Y(ny-1) d(ny+2) = d(ny+2) + D_00(2) * Y(ny) end select do nd = ny+2,0,-1 if (d(nd) /= 0.d0) exit enddo endif end select end subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value) implicit none use map_module BEGIN_DOC ! Parallel client for AO integrals END_DOC integer, intent(in) :: j,l integer,intent(out) :: n_integrals integer(key_kind),intent(out) :: buffer_i(ao_num*ao_num) real(integral_kind),intent(out) :: buffer_value(ao_num*ao_num) logical, external :: ao_two_e_integral_zero integer :: i,k double precision, external :: ao_two_e_integral double precision :: cpu_1,cpu_2, wall_1, wall_2 double precision :: integral, wall_0 double precision :: thr integer :: kk, m, j1, i1 thr = ao_integrals_threshold n_integrals = 0 j1 = j+shiftr(l*l-l,1) do k = 1, ao_num ! r1 i1 = shiftr(k*k-k,1) if (i1 > j1) then exit endif do i = 1, k i1 += 1 if (i1 > j1) then exit endif if (ao_two_e_integral_zero(i,j,k,l)) then cycle endif !DIR$ FORCEINLINE integral = ao_two_e_integral(i,k,j,l) ! i,k : r1 j,l : r2 if (abs(integral) < thr) then cycle endif n_integrals += 1 !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,buffer_i(n_integrals)) buffer_value(n_integrals) = integral enddo enddo end subroutine multiply_poly_local(b,nb,c,nc,d,nd) implicit none BEGIN_DOC ! Multiply two polynomials ! D(t) += B(t)*C(t) END_DOC integer, intent(in) :: nb, nc integer, intent(out) :: nd double precision, intent(in) :: b(0:nb), c(0:nc) double precision, intent(inout) :: d(0:nb+nc) integer :: ndtmp integer :: ib, ic, id, k if(ior(nc,nb) < 0) return !False if nc>=0 and nb>=0 do ib=0,nb do ic = 0,nc d(ib+ic) = d(ib+ic) + c(ic) * b(ib) enddo enddo do nd = nb+nc,0,-1 if (d(nd) /= 0.d0) exit enddo end !DIR$ FORCEINLINE subroutine multiply_poly_c2_inline_2e(b,nb,c,d,nd) implicit none BEGIN_DOC ! Multiply two polynomials ! D(t) += B(t)*C(t) END_DOC integer, intent(in) :: nb integer, intent(out) :: nd double precision, intent(in) :: b(0:nb), c(0:2) double precision, intent(inout) :: d(0:nb+2) integer :: ndtmp integer :: ib, ic, id, k if(nb < 0) return !False if nb>=0 select case (nb) case (0) d(0) = d(0) + c(0) * b(0) d(1) = d(1) + c(1) * b(0) d(2) = d(2) + c(2) * b(0) case (1) d(0) = d(0) + c(0) * b(0) d(1) = d(1) + c(0) * b(1) + c(1) * b(0) d(2) = d(2) + c(1) * b(1) + c(2) * b(0) d(3) = d(3) + c(2) * b(1) case (2) d(0) = d(0) + c(0) * b(0) d(1) = d(1) + c(0) * b(1) + c(1) * b(0) d(2) = d(2) + c(0) * b(2) + c(1) * b(1) + c(2) * b(0) d(3) = d(3) + c(1) * b(2) + c(2) * b(1) d(4) = d(4) + c(2) * b(2) case default d(0) = d(0) + c(0) * b(0) d(1) = d(1) + c(0) * b(1) + c(1) * b(0) do ib=2,nb d(ib) = d(ib) + c(0) * b(ib) + c(1) * b(ib-1) + c(2) * b(ib-2) enddo d(nb+1) = d(nb+1) + c(1) * b(nb) + c(2) * b(nb-1) d(nb+2) = d(nb+2) + c(2) * b(nb) end select do nd = nb+2,0,-1 if (d(nd) /= 0.d0) exit enddo end