! --- BEGIN_PROVIDER [integer, n_gauss_eff_pot] BEGIN_DOC ! number of gaussians to represent the effective potential : ! ! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2) ! ! Here (1 - erf(mu*r12))^2 is expanded in Gaussians as Eqs A11-A20 in JCP 154, 084119 (2021) END_DOC implicit none n_gauss_eff_pot = ng_fit_jast + 1 END_PROVIDER ! --- BEGIN_PROVIDER [integer, n_gauss_eff_pot_deriv] BEGIN_DOC ! V(r12) = -(1 - erf(mu*r12))^2 is expanded in Gaussians as Eqs A11-A20 in JCP 154, 084119 (2021) END_DOC implicit none n_gauss_eff_pot_deriv = ng_fit_jast END_PROVIDER ! --- BEGIN_PROVIDER [double precision, expo_gauss_eff_pot, (n_gauss_eff_pot)] &BEGIN_PROVIDER [double precision, coef_gauss_eff_pot, (n_gauss_eff_pot)] BEGIN_DOC ! Coefficients and exponents of the Fit on Gaussians of V(X) = -(1 - erf(mu*X))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*X)^2) ! ! V(X) = \sum_{i=1,n_gauss_eff_pot} coef_gauss_eff_pot(i) * exp(-expo_gauss_eff_pot(i) * X^2) ! ! Relies on the fit proposed in Eqs A11-A20 in JCP 154, 084119 (2021) END_DOC include 'constants.include.F' implicit none integer :: i ! fit of the -0.25 * (1 - erf(mu*x))^2 with n_max_fit_slat gaussians do i = 1, ng_fit_jast expo_gauss_eff_pot(i) = expo_gauss_1_erf_x_2(i) coef_gauss_eff_pot(i) = -0.25d0 * coef_gauss_1_erf_x_2(i) ! -1/4 * (1 - erf(mu*x))^2 enddo ! Analytical Gaussian part of the potential: + 1/(\sqrt(pi)mu) * exp(-(mu*x)^2) expo_gauss_eff_pot(ng_fit_jast+1) = mu_erf * mu_erf coef_gauss_eff_pot(ng_fit_jast+1) = 1.d0 * mu_erf * inv_sq_pi END_PROVIDER ! --- double precision function eff_pot_gauss(x, mu) BEGIN_DOC ! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2) END_DOC implicit none double precision, intent(in) :: x, mu eff_pot_gauss = mu/dsqrt(dacos(-1.d0)) * dexp(-mu*mu*x*x) - 0.25d0 * (1.d0 - derf(mu*x))**2.d0 end ! ------------------------------------------------------------------------------------------------- ! --- double precision function eff_pot_fit_gauss(x) implicit none BEGIN_DOC ! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2) ! ! but fitted with gaussians END_DOC double precision, intent(in) :: x integer :: i double precision :: alpha eff_pot_fit_gauss = derf(mu_erf*x)/x do i = 1, n_gauss_eff_pot alpha = expo_gauss_eff_pot(i) eff_pot_fit_gauss += coef_gauss_eff_pot(i) * dexp(-alpha*x*x) enddo end BEGIN_PROVIDER [integer, n_fit_1_erf_x] implicit none BEGIN_DOC ! END_DOC n_fit_1_erf_x = 2 END_PROVIDER BEGIN_PROVIDER [double precision, expos_slat_gauss_1_erf_x, (n_fit_1_erf_x)] implicit none BEGIN_DOC ! 1 - erf(mu*x) is fitted with a Slater and gaussian as in Eq.A15 of JCP 154, 084119 (2021) ! ! 1 - erf(mu*x) = e^{-expos_slat_gauss_1_erf_x(1) * mu *x} * e^{-expos_slat_gauss_1_erf_x(2) * mu^2 * x^2} END_DOC expos_slat_gauss_1_erf_x(1) = 1.09529d0 expos_slat_gauss_1_erf_x(2) = 0.756023d0 END_PROVIDER ! --- BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x, (n_max_fit_slat)] &BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x, (n_max_fit_slat)] BEGIN_DOC ! ! (1 - erf(mu*x)) = \sum_i coef_gauss_1_erf_x(i) * exp(-expo_gauss_1_erf_x(i) * x^2) ! ! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2) ! ! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians ! ! See Appendix 2 of JCP 154, 084119 (2021) ! END_DOC implicit none integer :: i double precision :: expos(n_max_fit_slat), alpha, beta alpha = expos_slat_gauss_1_erf_x(1) * mu_erf call expo_fit_slater_gam(alpha, expos) beta = expos_slat_gauss_1_erf_x(2) * mu_erf * mu_erf do i = 1, n_max_fit_slat expo_gauss_1_erf_x(i) = expos(i) + beta coef_gauss_1_erf_x(i) = coef_fit_slat_gauss(i) enddo END_PROVIDER ! --- double precision function fit_1_erf_x(x) BEGIN_DOC ! fit_1_erf_x(x) = \sum_i c_i exp (-alpha_i x^2) \approx (1 - erf(mu*x)) END_DOC implicit none integer :: i double precision, intent(in) :: x fit_1_erf_x = 0.d0 do i = 1, n_max_fit_slat fit_1_erf_x += dexp(-expo_gauss_1_erf_x(i) *x*x) * coef_gauss_1_erf_x(i) enddo end ! --- BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x_2, (ng_fit_jast)] &BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x_2, (ng_fit_jast)] BEGIN_DOC ! (1 - erf(mu*x))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * x^2) ! ! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2) ! ! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians END_DOC implicit none integer :: i double precision :: expos(ng_fit_jast), alpha, beta, tmp if(ng_fit_jast .eq. 1) then coef_gauss_1_erf_x_2 = (/ 0.85345277d0 /) expo_gauss_1_erf_x_2 = (/ 6.23519457d0 /) tmp = mu_erf * mu_erf do i = 1, ng_fit_jast expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) enddo elseif(ng_fit_jast .eq. 2) then coef_gauss_1_erf_x_2 = (/ 0.31030624d0 , 0.64364964d0 /) expo_gauss_1_erf_x_2 = (/ 55.39184787d0, 3.92151407d0 /) tmp = mu_erf * mu_erf do i = 1, ng_fit_jast expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) enddo elseif(ng_fit_jast .eq. 3) then coef_gauss_1_erf_x_2 = (/ 0.33206082d0 , 0.52347449d0, 0.12605012d0 /) expo_gauss_1_erf_x_2 = (/ 19.90272209d0, 3.2671671d0 , 336.47320445d0 /) tmp = mu_erf * mu_erf do i = 1, ng_fit_jast expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) enddo elseif(ng_fit_jast .eq. 5) then coef_gauss_1_erf_x_2 = (/ 0.02956716d0, 0.17025555d0, 0.32774114d0, 0.39034764d0, 0.07822781d0 /) expo_gauss_1_erf_x_2 = (/ 6467.28126d0, 46.9071990d0, 9.09617721d0, 2.76883328d0, 360.367093d0 /) tmp = mu_erf * mu_erf do i = 1, ng_fit_jast expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) enddo elseif(ng_fit_jast .eq. 6) then coef_gauss_1_erf_x_2 = (/ 0.18331042d0 , 0.10971118d0 , 0.29949169d0 , 0.34853132d0 , 0.0394275d0 , 0.01874444d0 /) expo_gauss_1_erf_x_2 = (/ 2.54293498d+01, 1.40317872d+02, 7.14630801d+00, 2.65517675d+00, 1.45142619d+03, 1.00000000d+04 /) tmp = mu_erf * mu_erf do i = 1, ng_fit_jast expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) enddo elseif(ng_fit_jast .eq. 7) then coef_gauss_1_erf_x_2 = (/ 0.0213619d0 , 0.03221511d0 , 0.29966689d0 , 0.19178934d0 , 0.06154732d0 , 0.28214555d0 , 0.11125985d0 /) expo_gauss_1_erf_x_2 = (/ 1.34727067d+04, 1.27166613d+03, 5.52584567d+00, 1.67753218d+01, 2.46145691d+02, 2.47971820d+00, 5.95141293d+01 /) tmp = mu_erf * mu_erf do i = 1, ng_fit_jast expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) enddo elseif(ng_fit_jast .eq. 8) then coef_gauss_1_erf_x_2 = (/ 0.28189124d0 , 0.19518669d0 , 0.12161735d0 , 0.24257438d0 , 0.07309656d0 , 0.042435d0 , 0.01926109d0 , 0.02393415d0 /) expo_gauss_1_erf_x_2 = (/ 4.69795903d+00, 1.21379451d+01, 3.55527053d+01, 2.39227172d+00, 1.14827721d+02, 4.16320213d+02, 1.52813587d+04, 1.78516557d+03 /) tmp = mu_erf * mu_erf do i = 1, ng_fit_jast expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) enddo !elseif(ng_fit_jast .eq. 9) then ! coef_gauss_1_erf_x_2 = (/ /) ! expo_gauss_1_erf_x_2 = (/ /) ! tmp = mu_erf * mu_erf ! do i = 1, ng_fit_jast ! expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i) ! enddo elseif(ng_fit_jast .eq. 20) then ASSERT(n_max_fit_slat == 20) alpha = 2.d0 * expos_slat_gauss_1_erf_x(1) * mu_erf call expo_fit_slater_gam(alpha, expos) beta = 2.d0 * expos_slat_gauss_1_erf_x(2) * mu_erf * mu_erf do i = 1, n_max_fit_slat expo_gauss_1_erf_x_2(i) = expos(i) + beta coef_gauss_1_erf_x_2(i) = coef_fit_slat_gauss(i) enddo else print *, ' not implemented yet' stop endif END_PROVIDER ! --- double precision function fit_1_erf_x_2(x) implicit none double precision, intent(in) :: x BEGIN_DOC ! fit_1_erf_x_2(x) = \sum_i c_i exp (-alpha_i x^2) \approx (1 - erf(mu*x))^2 END_DOC integer :: i fit_1_erf_x_2 = 0.d0 do i = 1, n_max_fit_slat fit_1_erf_x_2 += dexp(-expo_gauss_1_erf_x_2(i) *x*x) * coef_gauss_1_erf_x_2(i) enddo end subroutine inv_r_times_poly(r, dist_r, dist_vec, poly) implicit none BEGIN_DOC ! returns ! ! poly(1) = x / sqrt(x^2+y^2+z^2), poly(2) = y / sqrt(x^2+y^2+z^2), poly(3) = z / sqrt(x^2+y^2+z^2) ! ! with the arguments ! ! r(1) = x, r(2) = y, r(3) = z, dist_r = sqrt(x^2+y^2+z^2) ! ! dist_vec(1) = sqrt(y^2+z^2), dist_vec(2) = sqrt(x^2+z^2), dist_vec(3) = sqrt(x^2+y^2) END_DOC double precision, intent(in) :: r(3), dist_r, dist_vec(3) double precision, intent(out):: poly(3) double precision :: inv_dist integer :: i if (dist_r.gt. 1.d-8)then inv_dist = 1.d0/dist_r do i = 1, 3 poly(i) = r(i) * inv_dist enddo else do i = 1, 3 if(dabs(r(i)).lt.dist_vec(i))then inv_dist = 1.d0/dist_r poly(i) = r(i) * inv_dist else !if(dabs(r(i)))then poly(i) = 1.d0 ! poly(i) = 0.d0 endif enddo endif end