subroutine double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot) BEGIN_DOC ! for double excitation ONLY FOR ONE- AND TWO-BODY TERMS !! !! WARNING !! ! ! Non hermitian !! END_DOC use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2) double precision, intent(out) :: hmono, htwoe, hthree, htot integer :: occ(Nint*bit_kind_size,2) integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk integer :: degree,exc(0:2,2,2) integer :: h1, p1, h2, p2, s1, s2 double precision :: get_mo_two_e_integral_tc_int,phase call get_excitation_degree(key_i, key_j, degree, Nint) hmono = 0.d0 htwoe = 0.d0 hthree = 0.d0 htot = 0.d0 if(degree.ne.2)then return endif integer :: degree_i,degree_j call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int) call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int) call get_double_excitation(key_i, key_j, exc, phase, Nint) call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2) if(s1.ne.s2)then ! opposite spin two-body htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1) if(three_body_h_tc)then if(.not.double_normal_ord)then if(degree_i>degree_j)then call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree) else call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree) endif elseif(double_normal_ord.and.elec_num+elec_num.gt.2)then htwoe += normal_two_body_bi_orth(p2,h2,p1,h1)!!! WTF ??? endif endif else ! same spin two-body ! direct terms htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1) ! exchange terms htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1) if(three_body_h_tc)then if(.not.double_normal_ord)then if(degree_i>degree_j)then call three_comp_two_e_elem(key_j,h1,h2,p1,p2,s1,s2,hthree) else call three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree) endif elseif(double_normal_ord.and.elec_num+elec_num.gt.2)then htwoe -= normal_two_body_bi_orth(h2,p1,h1,p2)!!! WTF ??? htwoe += normal_two_body_bi_orth(h1,p1,h2,p2)!!! WTF ??? endif endif endif hthree *= phase htwoe *= phase htot = htwoe + hthree end subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree) implicit none integer(bit_kind), intent(in) :: key_i(N_int,2) integer, intent(in) :: h1,h2,p1,p2,s1,s2 double precision, intent(out) :: hthree integer :: nexc(2),i,ispin,na,nb integer(bit_kind) :: hole(N_int,2) integer(bit_kind) :: particle(N_int,2) integer :: occ_hole(N_int*bit_kind_size,2) integer :: occ_particle(N_int*bit_kind_size,2) integer :: n_occ_ab_hole(2),n_occ_ab_particle(2) integer(bit_kind) :: det_tmp(N_int,2) integer :: ipart, ihole double precision :: direct_int, exchange_int nexc(1) = 0 nexc(2) = 0 !! Get all the holes and particles of key_i with respect to the ROHF determinant do i=1,N_int hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1)) hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2)) particle(i,1) = iand(hole(i,1),key_i(i,1)) particle(i,2) = iand(hole(i,2),key_i(i,2)) hole(i,1) = iand(hole(i,1),ref_bitmask(i,1)) hole(i,2) = iand(hole(i,2),ref_bitmask(i,2)) nexc(1) = nexc(1) + popcnt(hole(i,1)) nexc(2) = nexc(2) + popcnt(hole(i,2)) enddo integer :: tmp(2) !DIR$ FORCEINLINE call bitstring_to_list_ab(particle, occ_particle, tmp, N_int) ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha ASSERT (tmp(2) == nexc(2)) ! Number of particle beta !DIR$ FORCEINLINE call bitstring_to_list_ab(hole, occ_hole, tmp, N_int) ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha ASSERT (tmp(2) == nexc(2)) ! Number of holes beta if(s1==s2.and.s1==1)then !!!!!!!!!!!!!!!!!!!!!!!!!! alpha/alpha double exc hthree = eff_2_e_from_3_e_aa(p2,p1,h2,h1) if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant !!!!!!!! the matrix element is already exact !!!!!!!! else you need to take care of holes and particles !!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!! ispin = 1 ! i==alpha ==> pure same spin terms do i = 1, nexc(ispin) ! number of couple of holes/particles ipart=occ_particle(i,ispin) hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1) ihole=occ_hole(i,ispin) hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1) enddo ispin = 2 ! i==beta ==> alpha/alpha/beta terms do i = 1, nexc(ispin) ! number of couple of holes/particles ! exchange between (h1,p1) and (h2,p2) ipart=occ_particle(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1) hthree += direct_int - exchange_int ihole=occ_hole(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1) hthree -= direct_int - exchange_int enddo !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! elseif(s1==s2.and.s1==2)then !!!!!!!!!!!!!!!!!!!!!!!!!! beta/beta double exc hthree = eff_2_e_from_3_e_bb(p2,p1,h2,h1) if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant !!!!!!!! the matrix element is already exact !!!!!!!! else you need to take care of holes and particles !!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!! ispin = 2 ! i==beta ==> pure same spin terms do i = 1, nexc(ispin) ! number of couple of holes/particles ipart=occ_particle(i,ispin) hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1) ihole=occ_hole(i,ispin) hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1) enddo ispin = 1 ! i==alpha==> beta/beta/alpha terms do i = 1, nexc(ispin) ! number of couple of holes/particles ! exchange between (h1,p1) and (h2,p2) ipart=occ_particle(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch12_bi_ort(ipart,p2,h2,p1,h1) hthree += direct_int - exchange_int ihole=occ_hole(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch12_bi_ort(ihole,p2,h2,p1,h1) hthree -= direct_int - exchange_int enddo else ! (h1,p1) == alpha/(h2,p2) == beta hthree = eff_2_e_from_3_e_ab(p2,p1,h2,h1) if(nexc(1)+nexc(2) ==0)return !! if you're on the reference determinant !!!!!!!! the matrix element is already exact !!!!!!!! else you need to take care of holes and particles !!!!!!!!!!!!! Holes and particles !!!!!!!!!!!!!!!!!!!!!!! ispin = 1 ! i==alpha ==> alpha/beta/alpha terms do i = 1, nexc(ispin) ! number of couple of holes/particles ! exchange between (h1,p1) and i ipart=occ_particle(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch13_bi_ort(ipart,p2,h2,p1,h1) hthree += direct_int - exchange_int ihole=occ_hole(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch13_bi_ort(ihole,p2,h2,p1,h1) hthree -= direct_int - exchange_int enddo ispin = 2 ! i==beta ==> alpha/beta/beta terms do i = 1, nexc(ispin) ! number of couple of holes/particles ! exchange between (h2,p2) and i ipart=occ_particle(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ipart,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch23_bi_ort(ipart,p2,h2,p1,h1) hthree += direct_int - exchange_int ihole=occ_hole(i,ispin) direct_int = three_e_5_idx_direct_bi_ort(ihole,p2,h2,p1,h1) exchange_int = three_e_5_idx_exch23_bi_ort(ihole,p2,h2,p1,h1) hthree -= direct_int - exchange_int enddo endif end BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_ab, (mo_num, mo_num, mo_num, mo_num)] implicit none BEGIN_DOC ! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/beta double excitations ! ! from contraction with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_beta a_h2_beta a_h1_alpha END_DOC integer :: i,h1,p1,h2,p2 integer :: hh1,hh2,pp1,pp2,m,mm integer :: Ne(2) integer, allocatable :: occ(:,:) double precision :: contrib allocate( occ(N_int*bit_kind_size,2) ) call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int) call give_contrib_for_abab(1,1,1,1,occ,Ne,contrib) eff_2_e_from_3_e_ab = 0.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) & !$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_ab) !$OMP DO SCHEDULE (static) do hh1 = 1, n_act_orb !! alpha h1 = list_act(hh1) do hh2 = 1, n_act_orb !! beta h2 = list_act(hh2) do pp1 = 1, n_act_orb !! alpha p1 = list_act(pp1) do pp2 = 1, n_act_orb !! beta p2 = list_act(pp2) call give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib) eff_2_e_from_3_e_ab(p2,p1,h2,h1) = contrib enddo enddo enddo enddo !$OMP END DO !$OMP END PARALLEL END_PROVIDER subroutine give_contrib_for_abab(h1,h2,p1,p2,occ,Ne,contrib) implicit none BEGIN_DOC ! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_beta ! ! on top of a determinant whose occupied orbitals is in (occ, Ne) END_DOC integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2) double precision, intent(out) :: contrib integer :: mm,m double precision :: direct_int, exchange_int !! h1,p1 == alpha !! h2,p2 == beta contrib = 0.d0 do mm = 1, Ne(1) !! alpha m = occ(mm,1) direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1) ! exchange between (h1,p1) and m exchange_int = three_e_5_idx_exch13_bi_ort(mm,p2,h2,p1,h1) contrib += direct_int - exchange_int enddo do mm = 1, Ne(2) !! beta m = occ(mm,2) direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1) ! exchange between (h2,p2) and m exchange_int = three_e_5_idx_exch23_bi_ort(mm,p2,h2,p1,h1) contrib += direct_int - exchange_int enddo end BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_aa, (mo_num, mo_num, mo_num, mo_num)] implicit none BEGIN_DOC ! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for alpha/alpha double excitations ! ! from contractionelec_alpha_num with HF density = a^{dagger}_p1_alpha a^{dagger}_p2_alpha a_h2_alpha a_h1_alpha ! ! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill ! ! |||| h2>h1, p2>p1 |||| END_DOC integer :: i,h1,p1,h2,p2 integer :: hh1,hh2,pp1,pp2,m,mm integer :: Ne(2) integer, allocatable :: occ(:,:) double precision :: contrib allocate( occ(N_int*bit_kind_size,2) ) call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int) call give_contrib_for_aaaa(1 ,1 ,1 ,1 ,occ,Ne,contrib) eff_2_e_from_3_e_aa = 100000000.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) & !$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_aa) !$OMP DO SCHEDULE (static) do hh1 = 1, n_act_orb !! alpha h1 = list_act(hh1) do hh2 = hh1+1, n_act_orb !! alpha h2 = list_act(hh2) do pp1 = 1, n_act_orb !! alpha p1 = list_act(pp1) do pp2 = pp1+1, n_act_orb !! alpha p2 = list_act(pp2) call give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib) eff_2_e_from_3_e_aa(p2,p1,h2,h1) = contrib enddo enddo enddo enddo !$OMP END DO !$OMP END PARALLEL END_PROVIDER subroutine give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib) implicit none BEGIN_DOC ! gives the contribution for a double excitation (h1,p1)_alpha (h2,p2)_alpha ! ! on top of a determinant whose occupied orbitals is in (occ, Ne) END_DOC integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2) double precision, intent(out) :: contrib integer :: mm,m double precision :: direct_int, exchange_int !! h1,p1 == alpha !! h2,p2 == alpha contrib = 0.d0 do mm = 1, Ne(1) !! alpha ==> pure parallele spin contribution m = occ(mm,1) contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1) enddo do mm = 1, Ne(2) !! beta m = occ(mm,2) direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1) ! exchange between (h1,p1) and (h2,p2) exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1) contrib += direct_int - exchange_int enddo end BEGIN_PROVIDER [ double precision, eff_2_e_from_3_e_bb, (mo_num, mo_num, mo_num, mo_num)] implicit none BEGIN_DOC ! eff_2_e_from_3_e_ab(p2,p1,h2,h1) = Effective Two-electron operator for beta/beta double excitations ! ! from contractionelec_beta_num with HF density = a^{dagger}_p1_beta a^{dagger}_p2_beta a_h2_beta a_h1_beta ! ! WARNING :: to be coherent with the phase convention used in the Hamiltonian matrix elements, you must fulfill ! ! |||| h2>h1, p2>p1 |||| END_DOC integer :: i,h1,p1,h2,p2 integer :: hh1,hh2,pp1,pp2,m,mm integer :: Ne(2) integer, allocatable :: occ(:,:) double precision :: contrib allocate( occ(N_int*bit_kind_size,2) ) call bitstring_to_list_ab(ref_bitmask,occ,Ne,N_int) call give_contrib_for_bbbb(1,1 ,1 ,1 ,occ,Ne,contrib) eff_2_e_from_3_e_bb = 100000000.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (hh1, h1, hh2, h2, pp1, p1, pp2, p2, contrib) & !$OMP SHARED (n_act_orb, list_act, Ne,occ, eff_2_e_from_3_e_bb) !$OMP DO SCHEDULE (static) do hh1 = 1, n_act_orb !! beta h1 = list_act(hh1) do hh2 = hh1+1, n_act_orb !! beta h2 = list_act(hh2) do pp1 = 1, n_act_orb !! beta p1 = list_act(pp1) do pp2 = pp1+1, n_act_orb !! beta p2 = list_act(pp2) call give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib) eff_2_e_from_3_e_bb(p2,p1,h2,h1) = contrib enddo enddo enddo enddo !$OMP END DO !$OMP END PARALLEL END_PROVIDER subroutine give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib) implicit none BEGIN_DOC ! gives the contribution for a double excitation (h1,p1)_beta (h2,p2)_beta ! ! on top of a determinant whose occupied orbitals is in (occ, Ne) END_DOC integer, intent(in) :: h1,h2,p1,p2,occ(N_int*bit_kind_size,2),Ne(2) double precision, intent(out) :: contrib integer :: mm,m double precision :: direct_int, exchange_int !! h1,p1 == beta !! h2,p2 == beta contrib = 0.d0 do mm = 1, Ne(2) !! beta ==> pure parallele spin contribution m = occ(mm,1) contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1) enddo do mm = 1, Ne(1) !! alpha m = occ(mm,1) direct_int = three_e_5_idx_direct_bi_ort(mm,p2,h2,p1,h1) ! exchange between (h1,p1) and (h2,p2) exchange_int = three_e_5_idx_exch12_bi_ort(mm,p2,h2,p1,h1) contrib += direct_int - exchange_int enddo end subroutine double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot) BEGIN_DOC ! for double excitation ONLY FOR ONE- AND TWO-BODY TERMS !! !! WARNING !! ! ! Non hermitian !! END_DOC use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2) double precision, intent(out) :: htot double precision :: hmono, htwoe integer :: occ(Nint*bit_kind_size,2) integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk integer :: degree,exc(0:2,2,2) integer :: h1, p1, h2, p2, s1, s2 double precision :: get_mo_two_e_integral_tc_int,phase call get_excitation_degree(key_i, key_j, degree, Nint) hmono = 0.d0 htwoe = 0.d0 htot = 0.d0 if(degree.ne.2)then return endif integer :: degree_i,degree_j call get_excitation_degree(ref_bitmask,key_i,degree_i,N_int) call get_excitation_degree(ref_bitmask,key_j,degree_j,N_int) call get_double_excitation(key_i, key_j, exc, phase, Nint) call decode_exc(exc, 2, h1, p1, h2, p2, s1, s2) if(s1.ne.s2)then ! opposite spin two-body htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1) else ! same spin two-body ! direct terms htwoe = mo_bi_ortho_tc_two_e(p2,p1,h2,h1) ! exchange terms htwoe -= mo_bi_ortho_tc_two_e(p1,p2,h2,h1) endif htwoe *= phase htot = htwoe end