BEGIN_PROVIDER [double precision, state_av_act_2_rdm_aa_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC ! state_av_act_2_rdm_aa_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-alpha electron pairs ! = END_DOC allocate(state_weights(N_states)) state_weights = state_average_weight integer :: ispin ! condition for alpha/beta spin ispin = 1 state_av_act_2_rdm_aa_mo = 0.D0 call wall_time(wall_1) double precision :: wall_1, wall_2 call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_aa_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) call wall_time(wall_2) print*,'Wall time to provide state_av_act_2_rdm_aa_mo',wall_2 - wall_1 END_PROVIDER BEGIN_PROVIDER [double precision, state_av_act_2_rdm_bb_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC ! state_av_act_2_rdm_bb_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for beta-beta electron pairs ! = END_DOC allocate(state_weights(N_states)) state_weights = state_average_weight integer :: ispin ! condition for alpha/beta spin ispin = 2 state_av_act_2_rdm_bb_mo = 0.d0 call wall_time(wall_1) double precision :: wall_1, wall_2 call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_bb_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) call wall_time(wall_2) print*,'Wall time to provide state_av_act_2_rdm_bb_mo',wall_2 - wall_1 END_PROVIDER BEGIN_PROVIDER [double precision, state_av_act_2_rdm_ab_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none double precision, allocatable :: state_weights(:) BEGIN_DOC ! state_av_act_2_rdm_ab_mo(i,j,k,l) = state average physicist two-body rdm restricted to the ACTIVE indices for alpha-beta electron pairs ! = END_DOC allocate(state_weights(N_states)) state_weights = state_average_weight integer :: ispin ! condition for alpha/beta spin print*,'' print*,'' print*,'' print*,'providint state_av_act_2_rdm_ab_mo ' ispin = 3 print*,'ispin = ',ispin state_av_act_2_rdm_ab_mo = 0.d0 call wall_time(wall_1) double precision :: wall_1, wall_2 call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_ab_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) call wall_time(wall_2) print*,'Wall time to provide state_av_act_2_rdm_ab_mo',wall_2 - wall_1 END_PROVIDER BEGIN_PROVIDER [double precision, state_av_act_2_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)] implicit none BEGIN_DOC ! state_av_act_2_rdm_spin_trace_mo(i,j,k,l) = state average physicist spin trace two-body rdm restricted to the ACTIVE indices ! The active part of the two-electron energy can be computed as: ! ! \sum_{i,j,k,l = 1, n_act_orb} state_av_act_2_rdm_spin_trace_mo(i,j,k,l) * < ii jj | kk ll > ! ! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l) END_DOC double precision, allocatable :: state_weights(:) allocate(state_weights(N_states)) state_weights = state_average_weight integer :: ispin ! condition for alpha/beta spin ispin = 4 state_av_act_2_rdm_spin_trace_mo = 0.d0 integer :: i call wall_time(wall_1) double precision :: wall_1, wall_2 print*,'providing state_av_act_2_rdm_spin_trace_mo ' call orb_range_2_rdm_state_av_openmp(state_av_act_2_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) call wall_time(wall_2) print*,'Time to provide state_av_act_2_rdm_spin_trace_mo',wall_2 - wall_1 END_PROVIDER