! --- BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao, (3, ao_num, ao_num, n_points_final_grid)] BEGIN_DOC ! ! int2_grad1_u12_ao(:,i,j,ipoint) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2) ! ! where r1 = r(ipoint) ! ! if J(r1,r2) = u12: ! ! int2_grad1_u12_ao(:,i,j,ipoint) = 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] \phi_i(r2) \phi_j(r2) ! = 0.5 * [ v_ij_erf_rk_cst_mu(i,j,ipoint) * r(:) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,:) ] ! ! if J(r1,r2) = u12 x v1 x v2 ! ! int2_grad1_u12_ao(:,i,j,ipoint) = v1 x [ 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] v2 \phi_i(r2) \phi_j(r2) ] ! - \grad_1 v1 x [ \int dr2 u12 v2 \phi_i(r2) \phi_j(r2) ] ! = 0.5 v_1b(ipoint) * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) * r(:) ! - 0.5 v_1b(ipoint) * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,:) ! - v_1b_grad[:,ipoint] * v_ij_u_cst_mu_j1b(i,j,ipoint) ! ! END_DOC implicit none integer :: ipoint, i, j double precision :: x, y, z, tmp_x, tmp_y, tmp_z, tmp0, tmp1, tmp2 PROVIDE j1b_type if(j1b_type .eq. 3) then do ipoint = 1, n_points_final_grid x = final_grid_points(1,ipoint) y = final_grid_points(2,ipoint) z = final_grid_points(3,ipoint) tmp0 = 0.5d0 * v_1b(ipoint) tmp_x = v_1b_grad(1,ipoint) tmp_y = v_1b_grad(2,ipoint) tmp_z = v_1b_grad(3,ipoint) do j = 1, ao_num do i = 1, ao_num tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) tmp2 = v_ij_u_cst_mu_j1b(i,j,ipoint) int2_grad1_u12_ao(1,i,j,ipoint) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_tmp_j1b(1,i,j,ipoint) - tmp2 * tmp_x int2_grad1_u12_ao(2,i,j,ipoint) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_tmp_j1b(2,i,j,ipoint) - tmp2 * tmp_y int2_grad1_u12_ao(3,i,j,ipoint) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_tmp_j1b(3,i,j,ipoint) - tmp2 * tmp_z enddo enddo enddo else do ipoint = 1, n_points_final_grid x = final_grid_points(1,ipoint) y = final_grid_points(2,ipoint) z = final_grid_points(3,ipoint) do j = 1, ao_num do i = 1, ao_num tmp1 = v_ij_erf_rk_cst_mu(i,j,ipoint) int2_grad1_u12_ao(1,i,j,ipoint) = tmp1 * x - x_v_ij_erf_rk_cst_mu_tmp(1,i,j,ipoint) int2_grad1_u12_ao(2,i,j,ipoint) = tmp1 * y - x_v_ij_erf_rk_cst_mu_tmp(2,i,j,ipoint) int2_grad1_u12_ao(3,i,j,ipoint) = tmp1 * z - x_v_ij_erf_rk_cst_mu_tmp(3,i,j,ipoint) enddo enddo enddo int2_grad1_u12_ao *= 0.5d0 endif END_PROVIDER ! --- BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num, ao_num)] BEGIN_DOC ! ! tc_grad_and_lapl_ao(k,i,l,j) = < k l | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) | ij > ! ! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2) ! ! This is obtained by integration by parts. ! END_DOC implicit none integer :: ipoint, i, j, k, l double precision :: weight1, contrib_x, contrib_y, contrib_z, tmp_x, tmp_y, tmp_z double precision :: ao_k_r, ao_i_r, ao_i_dx, ao_i_dy, ao_i_dz double precision, allocatable :: ac_mat(:,:,:,:) allocate(ac_mat(ao_num,ao_num,ao_num,ao_num)) ac_mat = 0.d0 do ipoint = 1, n_points_final_grid weight1 = 0.5d0 * final_weight_at_r_vector(ipoint) do i = 1, ao_num ao_i_r = weight1 * aos_in_r_array_transp (ipoint,i) ao_i_dx = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,1) ao_i_dy = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,2) ao_i_dz = weight1 * aos_grad_in_r_array_transp_bis(ipoint,i,3) do k = 1, ao_num ao_k_r = aos_in_r_array_transp(ipoint,k) tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1) tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2) tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3) do j = 1, ao_num do l = 1, ao_num contrib_x = int2_grad1_u12_ao(1,l,j,ipoint) * tmp_x contrib_y = int2_grad1_u12_ao(2,l,j,ipoint) * tmp_y contrib_z = int2_grad1_u12_ao(3,l,j,ipoint) * tmp_z ac_mat(k,i,l,j) += contrib_x + contrib_y + contrib_z enddo enddo enddo enddo enddo do j = 1, ao_num do l = 1, ao_num do i = 1, ao_num do k = 1, ao_num tc_grad_and_lapl_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) enddo enddo enddo enddo deallocate(ac_mat) END_PROVIDER ! ---