! --- BEGIN_PROVIDER [double precision, int2_u2e_ao, (ao_num, ao_num, n_points_final_grid)] BEGIN_DOC ! ! int2_u2e_ao(i,j,ipoint,:) = \int dr2 J_2e(r1,r2) \phi_i(r2) \phi_j(r2) ! ! where r1 = r(ipoint) ! END_DOC implicit none integer :: ipoint, i, j, jpoint double precision :: time0, time1 double precision :: x, y, z, r2 double precision :: dx, dy, dz double precision :: tmp_ct double precision :: tmp0, tmp1, tmp2, tmp3 PROVIDE j2e_type PROVIDE Env_type call wall_time(time0) print*, ' providing int2_u2e_ao ...' if(tc_integ_type .eq. "semi-analytic") then if( (j2e_type .eq. "Mu") .and. & ( (env_type .eq. "None") .or. (env_type .eq. "Prod_Gauss") .or. (env_type .eq. "Sum_Gauss") ) ) then PROVIDE mu_erf PROVIDE env_type env_val PROVIDE Ir2_Mu_long_Du_0 Ir2_Mu_long_Du_x Ir2_Mu_long_Du_y Ir2_Mu_long_Du_z Ir2_Mu_long_Du_2 PROVIDE Ir2_Mu_gauss_Du tmp_ct = 0.5d0 / (dsqrt(dacos(-1.d0)) * mu_erf) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (ipoint, i, j, x, y, z, r2, dx, dy, dz, & !$OMP tmp0, tmp1, tmp2, tmp3) & !$OMP SHARED (ao_num, n_points_final_grid, final_grid_points, & !$OMP tmp_ct, env_val, Ir2_Mu_long_Du_0, & !$OMP Ir2_Mu_long_Du_x, Ir2_Mu_long_Du_y, & !$OMP Ir2_Mu_long_Du_z, Ir2_Mu_gauss_Du, & !$OMP Ir2_Mu_long_Du_2, int2_u2e_ao) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid x = final_grid_points(1,ipoint) y = final_grid_points(2,ipoint) z = final_grid_points(3,ipoint) r2 = x*x + y*y + z*z dx = x * env_val(ipoint) dy = y * env_val(ipoint) dz = z * env_val(ipoint) tmp1 = 0.5d0 * env_val(ipoint) tmp0 = tmp1 * r2 tmp3 = tmp_ct * env_val(ipoint) do j = 1, ao_num do i = 1, ao_num tmp2 = tmp1 * Ir2_Mu_long_Du_2(i,j,ipoint) - dx * Ir2_Mu_long_Du_x(i,j,ipoint) - dy * Ir2_Mu_long_Du_y(i,j,ipoint) - dz * Ir2_Mu_long_Du_z(i,j,ipoint) int2_u2e_ao(i,j,ipoint) = tmp0 * Ir2_Mu_long_Du_0(i,j,ipoint) + tmp2 - tmp3 * Ir2_Mu_gauss_Du(i,j,ipoint) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL else print *, ' Error in int2_u2e_ao: Unknown Jastrow' stop endif ! j2e_type else write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet' stop endif ! tc_integ_type call wall_time(time1) print*, ' wall time for int2_u2e_ao (min) =', (time1-time0)/60.d0 call print_memory_usage() END_PROVIDER ! --- BEGIN_PROVIDER [double precision, int2_grad1_u2e_ao, (ao_num, ao_num, n_points_final_grid, 3)] BEGIN_DOC ! ! int2_grad1_u2e_ao(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J_2e(r1,r2)] \phi_i(r2) \phi_j(r2) ! ! where r1 = r(ipoint) ! END_DOC implicit none integer :: ipoint, i, j, m, jpoint double precision :: time0, time1 double precision :: x, y, z, r2 double precision :: dx, dy, dz double precision :: tmp_ct double precision :: tmp0, tmp1, tmp2 double precision :: tmp0_x, tmp0_y, tmp0_z double precision :: tmp1_x, tmp1_y, tmp1_z PROVIDE j2e_type PROVIDE Env_type call wall_time(time0) print*, ' providing int2_grad1_u2e_ao ...' if(tc_integ_type .eq. "semi-analytic") then if((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) then PROVIDE v_ij_erf_rk_cst_mu x_v_ij_erf_rk_cst_mu int2_grad1_u2e_ao = 0.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (ipoint, i, j, x, y, z, tmp1) & !$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points & !$OMP , v_ij_erf_rk_cst_mu, x_v_ij_erf_rk_cst_mu, int2_grad1_u2e_ao) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid x = final_grid_points(1,ipoint) y = final_grid_points(2,ipoint) z = final_grid_points(3,ipoint) do j = 1, ao_num do i = 1, ao_num tmp1 = v_ij_erf_rk_cst_mu(i,j,ipoint) int2_grad1_u2e_ao(i,j,ipoint,1) = 0.5d0 * (tmp1 * x - x_v_ij_erf_rk_cst_mu(i,j,ipoint,1)) int2_grad1_u2e_ao(i,j,ipoint,2) = 0.5d0 * (tmp1 * y - x_v_ij_erf_rk_cst_mu(i,j,ipoint,2)) int2_grad1_u2e_ao(i,j,ipoint,3) = 0.5d0 * (tmp1 * z - x_v_ij_erf_rk_cst_mu(i,j,ipoint,3)) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "Prod_Gauss")) then PROVIDE env_type env_val env_grad PROVIDE v_ij_erf_rk_cst_mu_env v_ij_u_cst_mu_env_an x_v_ij_erf_rk_cst_mu_env int2_grad1_u2e_ao = 0.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (ipoint, i, j, x, y, z, tmp0, tmp1, tmp2, tmp0_x, tmp0_y, tmp0_z) & !$OMP SHARED (ao_num, n_points_final_grid, final_grid_points, env_val, env_grad, & !$OMP v_ij_erf_rk_cst_mu_env, v_ij_u_cst_mu_env_an, x_v_ij_erf_rk_cst_mu_env, int2_grad1_u2e_ao) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid x = final_grid_points(1,ipoint) y = final_grid_points(2,ipoint) z = final_grid_points(3,ipoint) tmp0 = 0.5d0 * env_val(ipoint) tmp0_x = env_grad(1,ipoint) tmp0_y = env_grad(2,ipoint) tmp0_z = env_grad(3,ipoint) do j = 1, ao_num do i = 1, ao_num tmp1 = tmp0 * v_ij_erf_rk_cst_mu_env(i,j,ipoint) tmp2 = v_ij_u_cst_mu_env_an(i,j,ipoint) int2_grad1_u2e_ao(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,1) - tmp2 * tmp0_x int2_grad1_u2e_ao(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,2) - tmp2 * tmp0_y int2_grad1_u2e_ao(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,3) - tmp2 * tmp0_z enddo enddo enddo !$OMP END DO !$OMP END PARALLEL elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "Sum_Gauss")) then PROVIDE mu_erf PROVIDE env_type env_val env_grad PROVIDE Ir2_Mu_long_Du_0 Ir2_Mu_long_Du_x Ir2_Mu_long_Du_y Ir2_Mu_long_Du_z Ir2_Mu_long_Du_2 PROVIDE Ir2_Mu_gauss_Du tmp_ct = 0.5d0 / (dsqrt(dacos(-1.d0)) * mu_erf) int2_grad1_u2e_ao = 0.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (ipoint, i, j, x, y, z, r2, dx, dy, dz, tmp1, tmp2, & !$OMP tmp0_x, tmp0_y, tmp0_z, tmp1_x, tmp1_y, tmp1_z) & !$OMP SHARED (ao_num, n_points_final_grid, final_grid_points, & !$OMP tmp_ct, env_val, env_grad, Ir2_Mu_long_Du_0, & !$OMP Ir2_Mu_long_Du_x, Ir2_Mu_long_Du_y, & !$OMP Ir2_Mu_long_Du_z, Ir2_Mu_gauss_Du, & !$OMP Ir2_Mu_long_Du_2, int2_grad1_u2e_ao) !$OMP DO SCHEDULE (static) do ipoint = 1, n_points_final_grid x = final_grid_points(1,ipoint) y = final_grid_points(2,ipoint) z = final_grid_points(3,ipoint) r2 = x*x + y*y + z*z dx = env_grad(1,ipoint) dy = env_grad(2,ipoint) dz = env_grad(3,ipoint) tmp0_x = 0.5d0 * (env_val(ipoint) * x + r2 * dx) tmp0_y = 0.5d0 * (env_val(ipoint) * y + r2 * dy) tmp0_z = 0.5d0 * (env_val(ipoint) * z + r2 * dz) tmp1 = 0.5d0 * env_val(ipoint) tmp1_x = tmp_ct * dx tmp1_y = tmp_ct * dy tmp1_z = tmp_ct * dz do j = 1, ao_num do i = 1, ao_num tmp2 = 0.5d0 * Ir2_Mu_long_Du_2(i,j,ipoint) - x * Ir2_Mu_long_Du_x(i,j,ipoint) - y * Ir2_Mu_long_Du_y(i,j,ipoint) - z * Ir2_Mu_long_Du_z(i,j,ipoint) int2_grad1_u2e_ao(i,j,ipoint,1) = -Ir2_Mu_long_Du_0(i,j,ipoint) * tmp0_x + tmp1 * Ir2_Mu_long_Du_x(i,j,ipoint) - dx * tmp2 + tmp1_x * Ir2_Mu_gauss_Du(i,j,ipoint) int2_grad1_u2e_ao(i,j,ipoint,2) = -Ir2_Mu_long_Du_0(i,j,ipoint) * tmp0_y + tmp1 * Ir2_Mu_long_Du_y(i,j,ipoint) - dy * tmp2 + tmp1_y * Ir2_Mu_gauss_Du(i,j,ipoint) int2_grad1_u2e_ao(i,j,ipoint,3) = -Ir2_Mu_long_Du_0(i,j,ipoint) * tmp0_z + tmp1 * Ir2_Mu_long_Du_z(i,j,ipoint) - dz * tmp2 + tmp1_z * Ir2_Mu_gauss_Du(i,j,ipoint) enddo enddo enddo !$OMP END DO !$OMP END PARALLEL else print *, ' Error in int2_grad1_u2e_ao: Unknown Jastrow' stop endif ! j2e_type else write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet' stop endif ! tc_integ_type call wall_time(time1) print*, ' wall time for int2_grad1_u2e_ao (min) =', (time1-time0)/60.d0 call print_memory_usage() END_PROVIDER ! --- subroutine get_j1e_coef_fit_ao(dim_fit, coef_fit) implicit none integer , intent(in) :: dim_fit double precision, intent(out) :: coef_fit(dim_fit) integer :: i, ipoint double precision :: g double precision, allocatable :: A(:,:), b(:), A_inv(:,:) double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:) double precision, allocatable :: u1e_tmp(:) PROVIDE j1e_type PROVIDE int2_u2e_ao PROVIDE elec_alpha_num elec_beta_num elec_num PROVIDE mo_coef PROVIDE ao_overlap ! --- --- --- ! get u1e(r) allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num)) call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 & , mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) & , 0.d0, Pa, size(Pa, 1)) if(elec_alpha_num .eq. elec_beta_num) then Pb = Pa else call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 & , mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) & , 0.d0, Pb, size(Pb, 1)) endif Pt = Pa + Pb allocate(u1e_tmp(n_points_final_grid)) g = 0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num) call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_u2e_ao(1,1,1), ao_num*ao_num, Pt, 1, 0.d0, u1e_tmp, 1) FREE int2_u2e_ao deallocate(Pa, Pb, Pt) ! --- --- --- ! get A & b allocate(A(ao_num,ao_num), b(ao_num)) A(1:ao_num,1:ao_num) = ao_overlap(1:ao_num,1:ao_num) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i, ipoint) & !$OMP SHARED (n_points_final_grid, ao_num, & !$OMP final_weight_at_r_vector, aos_in_r_array_transp, u1e_tmp, b) !$OMP DO SCHEDULE (static) do i = 1, ao_num b(i) = 0.d0 do ipoint = 1, n_points_final_grid b(i) = b(i) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint) enddo enddo !$OMP END DO !$OMP END PARALLEL deallocate(u1e_tmp) ! --- --- --- ! solve Ax = b allocate(A_inv(ao_num,ao_num)) call get_inverse(A, ao_num, ao_num, A_inv, ao_num) deallocate(A) ! coef_fit = A_inv x b call dgemv("N", ao_num, ao_num, 1.d0, A_inv, ao_num, b, 1, 0.d0, coef_fit, 1) deallocate(A_inv, b) return end ! ---