BEGIN_PROVIDER[double precision, energy_x_sr_lda, (N_states) ] implicit none BEGIN_DOC ! exchange energy with the short range lda functional END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_x,vx_a,vx_b double precision, allocatable :: rhoa(:),rhob(:) allocate(rhoa(N_states), rhob(N_states)) energy_x_sr_lda = 0.d0 do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) double precision :: mu_local mu_local = mu_of_r_dft(i) call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b) energy_x_sr_lda(istate) += weight * e_x enddo enddo END_PROVIDER BEGIN_PROVIDER[double precision, energy_c_sr_lda, (N_states) ] implicit none BEGIN_DOC ! exchange energy with the short range lda functional END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_c,vc_a,vc_b double precision, allocatable :: rhoa(:),rhob(:) allocate(rhoa(N_states), rhob(N_states)) energy_c_sr_lda = 0.d0 do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) double precision :: mu_local mu_local = mu_of_r_dft(i) call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b) energy_c_sr_lda(istate) += weight * e_c enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, potential_x_alpha_ao_sr_lda,(ao_num,ao_num,N_states)] &BEGIN_PROVIDER [double precision, potential_x_beta_ao_sr_lda,(ao_num,ao_num,N_states)] implicit none BEGIN_DOC ! short range exchange alpha/beta potentials with lda functional on the |AO| basis END_DOC ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. integer :: istate do istate = 1, N_states call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_sr_vx_alpha_lda_w,size(aos_sr_vx_alpha_lda_w,1),0.d0,& potential_x_alpha_ao_sr_lda,size(potential_x_alpha_ao_sr_lda,1)) call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_sr_vx_beta_lda_w(1,1,istate),size(aos_sr_vx_beta_lda_w,1),0.d0,& potential_x_beta_ao_sr_lda(1,1,istate),size(potential_x_beta_ao_sr_lda,1)) enddo END_PROVIDER BEGIN_PROVIDER [double precision, potential_c_alpha_ao_sr_lda,(ao_num,ao_num,N_states)] &BEGIN_PROVIDER [double precision, potential_c_beta_ao_sr_lda,(ao_num,ao_num,N_states)] implicit none BEGIN_DOC ! short range correlation alpha/beta potentials with lda functional on the |AO| basis END_DOC ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. integer :: istate do istate = 1, N_states call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_sr_vc_alpha_lda_w(1,1,istate),size(aos_sr_vc_alpha_lda_w,1),0.d0,& potential_c_alpha_ao_sr_lda(1,1,istate),size(potential_c_alpha_ao_sr_lda,1)) call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_sr_vc_beta_lda_w(1,1,istate),size(aos_sr_vc_beta_lda_w,1),0.d0,& potential_c_beta_ao_sr_lda(1,1,istate),size(potential_c_beta_ao_sr_lda,1)) enddo END_PROVIDER BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_lda_w, (ao_num,n_points_final_grid,N_states)] &BEGIN_PROVIDER[double precision, aos_sr_vc_beta_lda_w, (ao_num,n_points_final_grid,N_states)] &BEGIN_PROVIDER[double precision, aos_sr_vx_alpha_lda_w, (ao_num,n_points_final_grid,N_states)] &BEGIN_PROVIDER[double precision, aos_sr_vx_beta_lda_w, (ao_num,n_points_final_grid,N_states)] implicit none BEGIN_DOC ! aos_sr_vxc_alpha_lda_w(j,i) = ao_i(r_j) * (sr_v^x_alpha(r_j) + sr_v^c_alpha(r_j)) * W(r_j) END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b double precision, allocatable :: rhoa(:),rhob(:) allocate(rhoa(N_states), rhob(N_states)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) double precision :: mu_local mu_local = mu_of_r_dft(i) call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b) call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b) do j =1, ao_num aos_sr_vc_alpha_lda_w(j,i,istate) = sr_vc_a * aos_in_r_array(j,i)*weight aos_sr_vc_beta_lda_w(j,i,istate) = sr_vc_b * aos_in_r_array(j,i)*weight aos_sr_vx_alpha_lda_w(j,i,istate) = sr_vx_a * aos_in_r_array(j,i)*weight aos_sr_vx_beta_lda_w(j,i,istate) = sr_vx_b * aos_in_r_array(j,i)*weight enddo enddo enddo END_PROVIDER BEGIN_PROVIDER[double precision, aos_sr_vxc_alpha_lda_w, (ao_num,n_points_final_grid,N_states)] &BEGIN_PROVIDER[double precision, aos_sr_vxc_beta_lda_w, (ao_num,n_points_final_grid,N_states)] implicit none BEGIN_DOC ! aos_sr_vxc_alpha_lda_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b double precision, allocatable :: rhoa(:),rhob(:) allocate(rhoa(N_states), rhob(N_states)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) double precision :: mu_local mu_local = mu_of_r_dft(i) call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b) call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b) do j =1, ao_num aos_sr_vxc_alpha_lda_w(j,i,istate) = (sr_vc_a + sr_vx_a) * aos_in_r_array(j,i)*weight aos_sr_vxc_beta_lda_w(j,i,istate) = (sr_vc_b + sr_vx_b) * aos_in_r_array(j,i)*weight enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_sr_lda,(ao_num,ao_num,N_states)] &BEGIN_PROVIDER [double precision, potential_xc_beta_ao_sr_lda ,(ao_num,ao_num,N_states)] implicit none BEGIN_DOC ! short range exchange/correlation alpha/beta potentials with lda functional on the AO basis END_DOC integer :: istate do istate = 1, N_states call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_sr_vxc_alpha_lda_w(1,1,istate),size(aos_sr_vxc_alpha_lda_w,1),0.d0,& potential_xc_alpha_ao_sr_lda(1,1,istate),size(potential_xc_alpha_ao_sr_lda,1)) call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_sr_vxc_beta_lda_w(1,1,istate),size(aos_sr_vxc_beta_lda_w,1),0.d0,& potential_xc_beta_ao_sr_lda(1,1,istate),size(potential_xc_beta_ao_sr_lda,1)) enddo END_PROVIDER