subroutine run_stochastic_cipsi implicit none BEGIN_DOC ! Selected Full Configuration Interaction with Stochastic selection and PT2. END_DOC integer :: i,j,k double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:) integer :: to_select logical, external :: qp_stop double precision :: rss double precision, external :: memory_of_double PROVIDE H_apply_buffer_allocated threshold_generators = 1.d0 SOFT_TOUCH threshold_generators rss = memory_of_double(N_states)*4.d0 call check_mem(rss,irp_here) allocate (pt2(N_states), rpt2(N_states), norm(N_states), variance(N_states)) double precision :: hf_energy_ref logical :: has double precision :: relative_error relative_error=PT2_relative_error pt2 = -huge(1.e0) rpt2 = -huge(1.e0) norm = 0.d0 variance = 0.d0 if (s2_eig) then call make_s2_eigenfunction endif call diagonalize_CI call save_wavefunction call ezfio_has_hartree_fock_energy(has) if (has) then call ezfio_get_hartree_fock_energy(hf_energy_ref) else hf_energy_ref = ref_bitmask_energy endif if (N_det > N_det_max) then psi_det = psi_det_sorted psi_coef = psi_coef_sorted N_det = N_det_max soft_touch N_det psi_det psi_coef if (s2_eig) then call make_s2_eigenfunction endif call diagonalize_CI call save_wavefunction endif double precision :: correlation_energy_ratio double precision :: error(N_states) correlation_energy_ratio = 0.d0 do while ( & (N_det < N_det_max) .and. & (maxval(abs(pt2(1:N_states))) > pt2_max) .and. & (correlation_energy_ratio <= correlation_energy_ratio_max) & ) write(*,'(A)') '--------------------------------------------------------------------------------' to_select = N_det to_select = max(N_states_diag, to_select) pt2 = 0.d0 variance = 0.d0 norm = 0.d0 call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, & norm, to_select) ! Stochastic PT2 and selection correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / & (psi_energy_with_nucl_rep(1) + pt2(1) - hf_energy_ref) correlation_energy_ratio = min(1.d0,correlation_energy_ratio) call save_energy(psi_energy_with_nucl_rep, pt2) call write_double(6,correlation_energy_ratio, 'Correlation ratio') call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2) do k=1,N_states rpt2(:) = pt2(:)/(1.d0 + norm(k)) enddo call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det) call print_extrapolated_energy() N_iter += 1 if (qp_stop()) exit ! Add selected determinants call copy_H_apply_buffer_to_wf() call save_wavefunction PROVIDE psi_coef PROVIDE psi_det PROVIDE psi_det_sorted call diagonalize_CI call save_wavefunction rpt2(:) = 0.d0 call save_energy(psi_energy_with_nucl_rep, rpt2) if (qp_stop()) exit enddo if (.not.qp_stop()) then if (N_det < N_det_max) then call diagonalize_CI call save_wavefunction rpt2(:) = 0.d0 call save_energy(psi_energy_with_nucl_rep, rpt2) endif pt2 = 0.d0 variance = 0.d0 norm = 0.d0 call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, & norm,0) ! Stochastic PT2 call save_energy(psi_energy_with_nucl_rep, pt2) do k=1,N_states rpt2(:) = pt2(:)/(1.d0 + norm(k)) enddo call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2) call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det) call print_extrapolated_energy() endif end