BEGIN_PROVIDER[double precision, energy_x_lda, (N_states) ] implicit none BEGIN_DOC ! exchange energy with the lda functional END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_x,vx_a,vx_b double precision, allocatable :: rhoa(:),rhob(:) allocate(rhoa(N_states), rhob(N_states)) energy_x_lda = 0.d0 do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) call ex_lda(rhoa(istate),rhob(istate),e_x,vx_a,vx_b) energy_x_lda(istate) += weight * e_x enddo enddo END_PROVIDER BEGIN_PROVIDER[double precision, energy_c_lda, (N_states) ] implicit none BEGIN_DOC ! correlation energy with the lda functional END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_c,vc_a,vc_b double precision, allocatable :: rhoa(:),rhob(:) allocate(rhoa(N_states), rhob(N_states)) energy_c_lda = 0.d0 do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) call ec_lda(rhoa(istate),rhob(istate),e_c,vc_a,vc_b) energy_c_lda(istate) += weight * e_c enddo enddo END_PROVIDER BEGIN_PROVIDER [double precision, potential_x_alpha_ao_lda,(ao_num,ao_num,N_states)] &BEGIN_PROVIDER [double precision, potential_x_beta_ao_lda,(ao_num,ao_num,N_states)] implicit none BEGIN_DOC ! short range exchange alpha/beta potentials with lda functional on the |AO| basis END_DOC ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. integer :: istate do istate = 1, N_states call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_vx_alpha_lda_w(1,1,istate),size(aos_vx_alpha_lda_w,1),0.d0,& potential_x_alpha_ao_lda(1,1,istate),size(potential_x_alpha_ao_lda,1)) call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_vx_beta_lda_w(1,1,istate),size(aos_vx_beta_lda_w,1),0.d0,& potential_x_beta_ao_lda(1,1,istate),size(potential_x_beta_ao_lda,1)) enddo END_PROVIDER BEGIN_PROVIDER [double precision, potential_c_alpha_ao_lda,(ao_num,ao_num,N_states)] &BEGIN_PROVIDER [double precision, potential_c_beta_ao_lda,(ao_num,ao_num,N_states)] implicit none BEGIN_DOC ! short range correlation alpha/beta potentials with lda functional on the |AO| basis END_DOC ! Second dimension is given as ao_num * N_states so that Lapack does the loop over N_states. integer :: istate do istate = 1, N_states call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_vc_alpha_lda_w(1,1,istate),size(aos_vc_alpha_lda_w,1),0.d0,& potential_c_alpha_ao_lda(1,1,istate),size(potential_c_alpha_ao_lda,1)) call dgemm('N','T',ao_num,ao_num,n_points_final_grid,1.d0, & aos_in_r_array,size(aos_in_r_array,1), & aos_vc_beta_lda_w(1,1,istate),size(aos_vc_beta_lda_w,1),0.d0,& potential_c_beta_ao_lda(1,1,istate),size(potential_c_beta_ao_lda,1)) enddo END_PROVIDER BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_lda,(ao_num,ao_num,N_states)] &BEGIN_PROVIDER [double precision, potential_xc_beta_ao_lda ,(ao_num,ao_num,N_states)] implicit none BEGIN_DOC ! short range exchange/correlation alpha/beta potentials with lda functional on the AO basis END_DOC integer :: istate double precision :: wall_1,wall_2 call wall_time(wall_1) print*,'providing the XC potentials lda ' do istate = 1, N_states call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_alpha_lda_w(1,1,istate),n_points_final_grid,0.d0,potential_xc_alpha_ao_lda(1,1,istate),ao_num) call dgemm('N','N',ao_num,ao_num,n_points_final_grid,1.d0,aos_in_r_array,ao_num,aos_vxc_beta_lda_w(1,1,istate) ,n_points_final_grid,0.d0,potential_xc_beta_ao_lda(1,1,istate),ao_num) enddo call wall_time(wall_2) END_PROVIDER BEGIN_PROVIDER[double precision, aos_vc_alpha_lda_w, (ao_num,n_points_final_grid,N_states)] &BEGIN_PROVIDER[double precision, aos_vc_beta_lda_w, (ao_num,n_points_final_grid,N_states)] &BEGIN_PROVIDER[double precision, aos_vx_alpha_lda_w, (ao_num,n_points_final_grid,N_states)] &BEGIN_PROVIDER[double precision, aos_vx_beta_lda_w, (ao_num,n_points_final_grid,N_states)] implicit none BEGIN_DOC ! aos_vxc_alpha_lda_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b double precision, allocatable :: rhoa(:),rhob(:) double precision :: mu_local mu_local = 1.d-9 allocate(rhoa(N_states), rhob(N_states)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b) call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b) do j =1, ao_num aos_vc_alpha_lda_w(j,i,istate) = vc_a * aos_in_r_array(j,i)*weight aos_vc_beta_lda_w(j,i,istate) = vc_b * aos_in_r_array(j,i)*weight aos_vx_alpha_lda_w(j,i,istate) = vx_a * aos_in_r_array(j,i)*weight aos_vx_beta_lda_w(j,i,istate) = vx_b * aos_in_r_array(j,i)*weight enddo enddo enddo END_PROVIDER BEGIN_PROVIDER[double precision, aos_vxc_alpha_lda_w, (n_points_final_grid,ao_num,N_states)] &BEGIN_PROVIDER[double precision, aos_vxc_beta_lda_w, (n_points_final_grid,ao_num,N_states)] implicit none BEGIN_DOC ! aos_vxc_alpha_lda_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j) END_DOC integer :: istate,i,j double precision :: r(3) double precision :: mu,weight double precision :: e_c,vc_a,vc_b,e_x,vx_a,vx_b double precision, allocatable :: rhoa(:),rhob(:) double precision :: mu_local mu_local = 1.d-9 allocate(rhoa(N_states), rhob(N_states)) do istate = 1, N_states do i = 1, n_points_final_grid r(1) = final_grid_points(1,i) r(2) = final_grid_points(2,i) r(3) = final_grid_points(3,i) weight = final_weight_at_r_vector(i) rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate) rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate) call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b) call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b) do j =1, ao_num aos_vxc_alpha_lda_w(i,j,istate) = (vc_a + vx_a) * aos_in_r_array(j,i)*weight aos_vxc_beta_lda_w(i,j,istate) = (vc_b + vx_b) * aos_in_r_array(j,i)*weight enddo enddo enddo END_PROVIDER