BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] implicit none BEGIN_DOC ! two_bod_alpha_beta(i,j,k,l) = ! 1 1 2 2 = chemist notations ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry ! END_DOC integer :: dim1,dim2,dim3,dim4 double precision :: cpu_0,cpu_1 dim1 = mo_num dim2 = mo_num dim3 = mo_num dim4 = mo_num two_bod_alpha_beta_mo = 0.d0 print*,'providing two_bod_alpha_beta ...' call wall_time(cpu_0) call two_body_dm_nstates_openmp(two_bod_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1)) call wall_time(cpu_1) print*,'two_bod_alpha_beta provided in',dabs(cpu_1-cpu_0) integer :: ii,jj,i,j,k,l if(no_core_density .EQ. "no_core_dm")then print*,'USING THE VALENCE ONLY TWO BODY DENSITY' do ii = 1, n_core_orb ! 1 i = list_core(ii) do j = 1, mo_num ! 2 do k = 1, mo_num ! 1 do l = 1, mo_num ! 2 ! 2 2 1 1 two_bod_alpha_beta_mo(l,j,k,i,:) = 0.d0 two_bod_alpha_beta_mo(j,l,k,i,:) = 0.d0 two_bod_alpha_beta_mo(l,j,i,k,:) = 0.d0 two_bod_alpha_beta_mo(j,l,i,k,:) = 0.d0 two_bod_alpha_beta_mo(k,i,l,j,:) = 0.d0 two_bod_alpha_beta_mo(k,i,j,l,:) = 0.d0 two_bod_alpha_beta_mo(i,k,l,j,:) = 0.d0 two_bod_alpha_beta_mo(i,k,j,l,:) = 0.d0 enddo enddo enddo enddo endif END_PROVIDER BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)] implicit none BEGIN_DOC ! two_bod_alpha_beta_mo_physicist,(i,j,k,l) = ! 1 2 1 2 = physicist notations ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry ! END_DOC integer :: i,j,k,l,istate double precision :: cpu_0,cpu_1 two_bod_alpha_beta_mo_physicist = 0.d0 print*,'providing two_bod_alpha_beta_mo_physicist ...' call wall_time(cpu_0) do istate = 1, N_states do i = 1, mo_num do j = 1, mo_num do k = 1, mo_num do l = 1, mo_num ! 1 2 1 2 1 1 2 2 two_bod_alpha_beta_mo_physicist(l,k,i,j,istate) = two_bod_alpha_beta_mo(i,l,j,k,istate) enddo enddo enddo enddo enddo call wall_time(cpu_1) print*,'two_bod_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0) END_PROVIDER subroutine two_body_dm_nstates_openmp(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = H|u_0> and s_0 = S^2 |u_0> ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC integer, intent(in) :: N_st,sze integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: u_0(sze,N_st) integer :: k double precision, allocatable :: u_t(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t allocate(u_t(N_st,N_det)) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) enddo call dtranspose( & u_0, & size(u_0, 1), & u_t, & size(u_t, 1), & N_det, N_st) call two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1) deallocate(u_t) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) enddo end subroutine two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = H|u_0> and s_0 = S^2 |u_0> ! ! Default should be 1,N_det,0,1 END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) double precision, intent(in) :: u_t(N_st,N_det) PROVIDE N_int select case (N_int) case (1) call two_body_dm_nstates_openmp_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (2) call two_body_dm_nstates_openmp_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (3) call two_body_dm_nstates_openmp_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (4) call two_body_dm_nstates_openmp_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case default call two_body_dm_nstates_openmp_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) end select end BEGIN_TEMPLATE subroutine two_body_dm_nstates_openmp_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) double precision, intent(in) :: u_t(N_st,N_det) double precision :: hij, sij integer :: i,j,k,l integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: istate integer :: krow, kcol, krow_b, kcol_b integer :: lrow, lcol integer :: mrow, mcol integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det3($N_int,2) integer(bit_kind), allocatable :: buffer(:,:) integer :: n_doubles integer, allocatable :: doubles(:) integer, allocatable :: singles_a(:) integer, allocatable :: singles_b(:) integer, allocatable :: idx(:), idx0(:) integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax integer*8 :: k8 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 allocate(idx0(maxab)) do i=1,maxab idx0(i) = i enddo ! Prepare the array of all alpha single excitations ! ------------------------------------------------- PROVIDE N_int nthreads_davidson ! Alpha/Beta double excitations ! ============================= allocate( buffer($N_int,maxab), & singles_a(maxab), & singles_b(maxab), & doubles(maxab), & idx(maxab)) kcol_prev=-1 ASSERT (iend <= N_det) ASSERT (istart > 0) ASSERT (istep > 0) do k_a=istart+ishift,iend,istep krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) if (kcol /= kcol_prev) then call get_all_spin_singles_$N_int( & psi_det_beta_unique, idx0, & tmp_det(1,2), N_det_beta_unique, & singles_b, n_singles_b) endif kcol_prev = kcol ! Loop over singly excited beta columns ! ------------------------------------- do i=1,n_singles_b lcol = singles_b(i) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) l_a = psi_bilinear_matrix_columns_loc(lcol) ASSERT (l_a <= N_det) do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ASSERT (l_a <= N_det) idx(j) = l_a l_a = l_a+1 enddo j = j-1 call get_all_spin_singles_$N_int( & buffer, idx, tmp_det(1,1), j, & singles_a, n_singles_a ) ! Loop over alpha singles ! ----------------------- do k = 1,n_singles_a l_a = singles_a(k) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) !!!!!!!!!!!!!!!!!! ALPHA BETA do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) enddo call off_diagonal_double_to_two_body_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) enddo enddo enddo do k_a=istart+ishift,iend,istep ! Single and double alpha excitations ! =================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) ! Initial determinant is at k_b in beta-major representation ! ---------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) spindet(1:$N_int) = tmp_det(1:$N_int,1) ! Loop inside the beta column to gather all the connected alphas lcol = psi_bilinear_matrix_columns(k_a) l_a = psi_bilinear_matrix_columns_loc(lcol) do i=1,N_det_alpha_unique if (l_a > N_det) exit lcol = psi_bilinear_matrix_columns(l_a) if (lcol /= kcol) exit lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) idx(i) = l_a l_a = l_a+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_a, doubles, n_singles_a, n_doubles ) ! Compute Hij for all alpha singles ! ---------------------------------- tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) do i=1,n_singles_a l_a = singles_a(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) !!!! MONO SPIN do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) enddo call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) enddo !! Compute Hij for all alpha doubles !! ---------------------------------- ! !do i=1,n_doubles ! l_a = doubles(i) ! ASSERT (l_a <= N_det) ! lrow = psi_bilinear_matrix_rows(l_a) ! ASSERT (lrow <= N_det_alpha_unique) ! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij) ! do l=1,N_st ! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) ! ! same spin => sij = 0 ! enddo !enddo ! Single and double beta excitations ! ================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) kcol = psi_bilinear_matrix_columns(k_a) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) spindet(1:$N_int) = tmp_det(1:$N_int,2) ! Initial determinant is at k_b in beta-major representation ! ----------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ! Loop inside the alpha row to gather all the connected betas lrow = psi_bilinear_matrix_transp_rows(k_b) l_b = psi_bilinear_matrix_transp_rows_loc(lrow) do i=1,N_det_beta_unique if (l_b > N_det) exit lrow = psi_bilinear_matrix_transp_rows(l_b) if (lrow /= krow) exit lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) idx(i) = l_b l_b = l_b+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_b, doubles, n_singles_b, n_doubles ) ! Compute Hij for all beta singles ! ---------------------------------- tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) do i=1,n_singles_b l_b = singles_b(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) l_a = psi_bilinear_matrix_transp_order(l_b) do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) enddo call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) ASSERT (l_a <= N_det) enddo ! !! Compute Hij for all beta doubles !! ---------------------------------- ! !do i=1,n_doubles ! l_b = doubles(i) ! ASSERT (l_b <= N_det) ! lcol = psi_bilinear_matrix_transp_columns(l_b) ! ASSERT (lcol <= N_det_beta_unique) ! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij) ! l_a = psi_bilinear_matrix_transp_order(l_b) ! ASSERT (l_a <= N_det) ! do l=1,N_st ! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) ! ! same spin => sij = 0 ! enddo !enddo ! Diagonal contribution ! ===================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem double precision :: c_1(N_states),c_2(N_states) do l = 1, N_states c_1(l) = u_t(l,k_a) enddo call diagonal_contrib_to_two_body_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4) end do deallocate(buffer, singles_a, singles_b, doubles, idx) end SUBST [ N_int ] 1;; 2;; 3;; 4;; N_int;; END_TEMPLATE subroutine diagonal_contrib_to_two_body_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4) use bitmasks implicit none integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) integer(bit_kind), intent(in) :: det_1(N_int,2) double precision, intent(in) :: c_1(N_states) integer :: occ(N_int*bit_kind_size,2) integer :: n_occ_ab(2) integer :: i,j,h1,h2,istate double precision :: c_1_bis call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int) do istate = 1, N_states c_1_bis = c_1(istate) * c_1(istate) do i = 1, n_occ_ab(1) h1 = occ(i,1) do j = 1, n_occ_ab(2) h2 = occ(j,2) big_array(h1,h1,h2,h2,istate) += c_1_bis enddo enddo enddo end subroutine diagonal_contrib_to_all_two_body_dm(det_1,c_1,big_array_ab,big_array_aa,big_array_bb,dim1,dim2,dim3,dim4) use bitmasks implicit none integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) integer(bit_kind), intent(in) :: det_1(N_int,2) double precision, intent(in) :: c_1(N_states) integer :: occ(N_int*bit_kind_size,2) integer :: n_occ_ab(2) integer :: i,j,h1,h2,istate double precision :: c_1_bis BEGIN_DOC ! no factor 1/2 have to be taken into account as the permutations are already taken into account END_DOC call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int) do istate = 1, N_states c_1_bis = c_1(istate) * c_1(istate) do i = 1, n_occ_ab(1) h1 = occ(i,1) do j = 1, n_occ_ab(2) h2 = occ(j,2) big_array_ab(h1,h1,h2,h2,istate) += c_1_bis enddo do j = 1, n_occ_ab(1) h2 = occ(j,1) big_array_aa(h1,h2,h1,h2,istate) -= c_1_bis big_array_aa(h1,h1,h2,h2,istate) += c_1_bis enddo enddo do i = 1, n_occ_ab(2) h1 = occ(i,2) do j = 1, n_occ_ab(2) h2 = occ(j,2) big_array_bb(h1,h1,h2,h2,istate) += c_1_bis big_array_bb(h1,h2,h1,h2,istate) -= c_1_bis enddo enddo enddo end subroutine off_diagonal_double_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) use bitmasks implicit none integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2) double precision, intent(in) :: c_1(N_states),c_2(N_states) integer :: i,j,h1,h2,p1,p2,istate integer :: exc(0:2,2,2) double precision :: phase call get_double_excitation(det_1,det_2,exc,phase,N_int) h1 = exc(1,1,1) h2 = exc(1,1,2) p1 = exc(1,2,1) p2 = exc(1,2,2) do istate = 1, N_states big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate) ! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate) enddo end subroutine off_diagonal_single_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) use bitmasks implicit none integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2) double precision, intent(in) :: c_1(N_states),c_2(N_states) integer :: occ(N_int*bit_kind_size,2) integer :: n_occ_ab(2) integer :: i,j,h1,h2,istate,p1 integer :: exc(0:2,2,2) double precision :: phase call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int) call get_single_excitation(det_1,det_2,exc,phase,N_int) if (exc(0,1,1) == 1) then ! Mono alpha h1 = exc(1,1,1) p1 = exc(1,2,1) do istate = 1, N_states do i = 1, n_occ_ab(2) h2 = occ(i,2) big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase enddo enddo else ! Mono beta h1 = exc(1,1,2) p1 = exc(1,2,2) do istate = 1, N_states do i = 1, n_occ_ab(1) h2 = occ(i,1) big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase enddo enddo endif end