BEGIN_PROVIDER [ double precision, ao_pseudo_integrals, (ao_num,ao_num)] implicit none BEGIN_DOC ! Pseudo-potential integrals in the |AO| basis set. END_DOC if (read_ao_integrals_pseudo) then call ezfio_get_ao_one_e_ints_ao_integrals_pseudo(ao_pseudo_integrals) print *, 'AO pseudopotential integrals read from disk' else ao_pseudo_integrals = 0.d0 if (do_pseudo) then if (pseudo_klocmax > 0) then ao_pseudo_integrals += ao_pseudo_integrals_local endif if (pseudo_kmax > 0) then ao_pseudo_integrals += ao_pseudo_integrals_non_local endif endif endif if (write_ao_integrals_pseudo) then call ezfio_set_ao_one_e_ints_ao_integrals_pseudo(ao_pseudo_integrals) print *, 'AO pseudopotential integrals written to disk' endif END_PROVIDER BEGIN_PROVIDER [ double precision, ao_pseudo_integrals_local, (ao_num,ao_num)] use omp_lib implicit none BEGIN_DOC ! Local pseudo-potential END_DOC include 'utils/constants.include.F' double precision :: alpha, beta, gama, delta integer :: num_A,num_B double precision :: A_center(3),B_center(3),C_center(3) integer :: power_A(3),power_B(3) integer :: i,j,k,l,m double precision :: Vloc, Vpseudo double precision :: wall_1, wall_2, wall_0 integer :: thread_num double precision :: c double precision :: Z PROVIDE ao_coef_normalized_ordered_transp PROVIDE pseudo_v_k_transp pseudo_n_k_transp pseudo_klocmax pseudo_dz_k_transp ao_pseudo_integrals_local = 0.d0 print*, 'Providing the nuclear electron pseudo integrals (local)' ! Dummy iteration for OpenMP j=1 i=1 l=1 m=1 num_A = ao_nucl(j) power_A(1:3)= ao_power(j,1:3) A_center(1:3) = nucl_coord(num_A,1:3) num_B = ao_nucl(i) power_B(1:3)= ao_power(i,1:3) B_center(1:3) = nucl_coord(num_B,1:3) alpha = ao_expo_ordered_transp(l,j) beta = ao_expo_ordered_transp(m,i) c = 0.d0 do k = 1, nucl_num Z = nucl_charge(k) C_center(1:3) = nucl_coord(k,1:3) c = c + Vloc(pseudo_klocmax, & pseudo_v_k_transp (1,k), & pseudo_n_k_transp (1,k), & pseudo_dz_k_transp(1,k), & A_center,power_A,alpha,B_center,power_B,beta,C_center) enddo ao_pseudo_integrals_local = 0.d0 call wall_time(wall_1) thread_num = 0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B,& !$OMP num_A,num_B,Z,c, & !$OMP wall_0,wall_2,thread_num) & !$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp,& !$OMP ao_pseudo_integrals_local,nucl_num,nucl_charge, & !$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_v_k_transp,pseudo_n_k_transp, pseudo_dz_k_transp,& !$OMP wall_1) !$ thread_num = omp_get_thread_num() wall_0 = wall_1 !$OMP DO do j = 1, ao_num num_A = ao_nucl(j) power_A(1:3)= ao_power(j,1:3) A_center(1:3) = nucl_coord(num_A,1:3) do i = 1, ao_num num_B = ao_nucl(i) power_B(1:3)= ao_power(i,1:3) B_center(1:3) = nucl_coord(num_B,1:3) do l=1,ao_prim_num(j) alpha = ao_expo_ordered_transp(l,j) do m=1,ao_prim_num(i) beta = ao_expo_ordered_transp(m,i) c = 0.d0 if (dabs(ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i))& < thresh) then cycle endif do k = 1, nucl_num Z = nucl_charge(k) C_center(1:3) = nucl_coord(k,1:3) c = c + Vloc(pseudo_klocmax, & pseudo_v_k_transp (1,k), & pseudo_n_k_transp (1,k), & pseudo_dz_k_transp(1,k), & A_center,power_A,alpha,B_center,power_B,beta,C_center) enddo ao_pseudo_integrals_local(i,j) = ao_pseudo_integrals_local(i,j) +& ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i)*c enddo enddo enddo call wall_time(wall_2) if (thread_num == 0) then if (wall_2 - wall_0 > 1.d0) then wall_0 = wall_2 print*, 100.*float(j)/float(ao_num), '% in ', & wall_2-wall_1, 's' endif endif enddo !$OMP END DO !$OMP END PARALLEL END_PROVIDER BEGIN_PROVIDER [ double precision, ao_pseudo_integrals_non_local, (ao_num,ao_num)] use omp_lib implicit none BEGIN_DOC ! Non-local pseudo-potential END_DOC include 'utils/constants.include.F' double precision :: alpha, beta, gama, delta integer :: num_A,num_B double precision :: A_center(3),B_center(3),C_center(3) integer :: power_A(3),power_B(3) integer :: i,j,k,l,m double precision :: Vloc, Vpseudo double precision :: wall_1, wall_2, wall_0 integer :: thread_num double precision :: c double precision :: Z PROVIDE ao_coef_normalized_ordered_transp PROVIDE pseudo_lmax pseudo_kmax pseudo_v_kl_transp pseudo_n_kl_transp pseudo_dz_kl_transp ao_pseudo_integrals_non_local = 0.d0 print*, 'Providing the nuclear electron pseudo integrals (non-local)' call wall_time(wall_1) thread_num = 0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B,& !$OMP num_A,num_B,Z,c, & !$OMP wall_0,wall_2,thread_num) & !$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp,& !$OMP ao_pseudo_integrals_non_local,nucl_num,nucl_charge,& !$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_n_kl_transp, pseudo_v_kl_transp, pseudo_dz_kl_transp,& !$OMP wall_1) !$ thread_num = omp_get_thread_num() wall_0 = wall_1 !$OMP DO SCHEDULE (guided) ! do j = 1, ao_num num_A = ao_nucl(j) power_A(1:3)= ao_power(j,1:3) A_center(1:3) = nucl_coord(num_A,1:3) do i = 1, ao_num num_B = ao_nucl(i) power_B(1:3)= ao_power(i,1:3) B_center(1:3) = nucl_coord(num_B,1:3) do l=1,ao_prim_num(j) alpha = ao_expo_ordered_transp(l,j) do m=1,ao_prim_num(i) beta = ao_expo_ordered_transp(m,i) c = 0.d0 if (dabs(ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i))& < thresh) then cycle endif do k = 1, nucl_num Z = nucl_charge(k) C_center(1:3) = nucl_coord(k,1:3) c = c + Vpseudo(pseudo_lmax,pseudo_kmax, & pseudo_v_kl_transp(1,0,k), & pseudo_n_kl_transp(1,0,k), & pseudo_dz_kl_transp(1,0,k), & A_center,power_A,alpha,B_center,power_B,beta,C_center) enddo ao_pseudo_integrals_non_local(i,j) = ao_pseudo_integrals_non_local(i,j) +& ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i)*c enddo enddo enddo call wall_time(wall_2) if (thread_num == 0) then if (wall_2 - wall_0 > 1.d0) then wall_0 = wall_2 print*, 100.*float(j)/float(ao_num), '% in ', & wall_2-wall_1, 's' endif endif enddo !$OMP END DO !$OMP END PARALLEL END_PROVIDER BEGIN_PROVIDER [ double precision, pseudo_v_k_transp, (pseudo_klocmax,nucl_num) ] &BEGIN_PROVIDER [ integer , pseudo_n_k_transp, (pseudo_klocmax,nucl_num) ] &BEGIN_PROVIDER [ double precision, pseudo_dz_k_transp, (pseudo_klocmax,nucl_num)] implicit none BEGIN_DOC ! Transposed arrays for pseudopotentials END_DOC integer :: i,j do j=1,nucl_num do i=1,pseudo_klocmax pseudo_v_k_transp (i,j) = pseudo_v_k (j,i) pseudo_n_k_transp (i,j) = pseudo_n_k (j,i) pseudo_dz_k_transp(i,j) = pseudo_dz_k(j,i) enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, pseudo_v_kl_transp, (pseudo_kmax,0:pseudo_lmax,nucl_num) ] &BEGIN_PROVIDER [ integer , pseudo_n_kl_transp, (pseudo_kmax,0:pseudo_lmax,nucl_num) ] &BEGIN_PROVIDER [ double precision, pseudo_dz_kl_transp, (pseudo_kmax,0:pseudo_lmax,nucl_num)] implicit none BEGIN_DOC ! Transposed arrays for pseudopotentials END_DOC integer :: i,j,l do j=1,nucl_num do l=0,pseudo_lmax do i=1,pseudo_kmax pseudo_v_kl_transp (i,l,j) = pseudo_v_kl (j,i,l) pseudo_n_kl_transp (i,l,j) = pseudo_n_kl (j,i,l) pseudo_dz_kl_transp(i,l,j) = pseudo_dz_kl(j,i,l) enddo enddo enddo END_PROVIDER