! --- subroutine give_explicit_cpoly_and_cgaussian_x(P_new, P_center, p, fact_k, iorder, & alpha, beta, a, b, Ae_center, Be_center, Ap_center, Bp_center, dim) BEGIN_DOC ! ! Transform the product of ! ! (x - x_Ap)^a (x - x_Bp)^b exp(-alpha (r - Ae)^2) exp(-beta (r - Be)^2) ! ! into ! ! fact_k \sum_{i=0}^{iorder} (x - x_P)^i exp(-p (r - P)^2) ! END_DOC implicit none include 'constants.include.F' integer, intent(in) :: dim integer, intent(in) :: a, b complex*16, intent(in) :: alpha, Ae_center, Ap_center complex*16, intent(in) :: beta, Be_center, Bp_center integer, intent(out) :: iorder complex*16, intent(out) :: p, P_center, fact_k complex*16, intent(out) :: P_new(0:max_dim) integer :: n_new, i, j complex*16 :: P_a(0:max_dim), P_b(0:max_dim) complex*16 :: p_inv, ab, d_AB, tmp !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: P_a, P_b P_new = (0.d0, 0.d0) ! new exponent p = alpha + beta ! new center p_inv = (1.d0, 0.d0) / p ab = alpha * beta P_center = (alpha * Ae_center + beta * Be_center) * p_inv ! get the factor d_AB = (Ae_center - Be_center) * (Ae_center - Be_center) tmp = ab * p_inv * d_AB if(zabs(tmp) .lt. 50.d0) then fact_k = zexp(-tmp) else fact_k = (0.d0, 0.d0) endif ! Recenter the polynomials P_a and P_b on P_center !DIR$ FORCEINLINE call recentered_cpoly2(P_a(0), Ap_center, P_center, a, P_b(0), Bp_center, P_center, b) n_new = 0 !DIR$ FORCEINLINE call multiply_cpoly(P_a(0), a, P_b(0), b, P_new(0), n_new) iorder = a + b end ! --- subroutine give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_k, iorder, & alpha, beta, a, b, Ae_center, Be_center, Ap_center, Bp_center, dim) BEGIN_DOC ! ! Transforms the product of ! ! (x - x_Ap)^a(1) (x - x_Bp)^b(1) exp(-alpha (x - x_Ae)^2) exp(-beta (x - x_Be)^2) x ! (y - y_Ap)^a(2) (y - y_Bp)^b(2) exp(-alpha (y - y_Ae)^2) exp(-beta (y - y_Be)^2) x ! (z - z_Ap)^a(3) (z - z_Bp)^b(3) exp(-alpha (z - z_Ae)^2) exp(-beta (z - z_Be)^2) ! ! into ! fact_k * [sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x] exp (-p (x-P_center(1))^2) ! * [sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y] exp (-p (y-P_center(2))^2) ! * [sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z] exp (-p (z-P_center(3))^2) ! ! WARNING ::: IF fact_k is too smal then: ! returns a "s" function centered in zero ! with an inifinite exponent and a zero polynom coef ! END_DOC implicit none include 'constants.include.F' integer, intent(in) :: dim, a(3), b(3) complex*16, intent(in) :: alpha, Ae_center(3), Ap_center(3) complex*16, intent(in) :: beta, Be_center(3), Bp_center(3) integer, intent(out) :: iorder(3) complex*16, intent(out) :: p, P_center(3), fact_k, P_new(0:max_dim,3) integer :: n_new, i, j complex*16 :: P_a(0:max_dim,3), P_b(0:max_dim,3) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: P_a, P_b iorder(1) = 0 iorder(2) = 0 iorder(3) = 0 P_new(0,1) = (0.d0, 0.d0) P_new(0,2) = (0.d0, 0.d0) P_new(0,3) = (0.d0, 0.d0) !DIR$ FORCEINLINE call cgaussian_product(alpha, Ae_center, beta, Be_center, fact_k, p, P_center) ! IF fact_k is too smal then: returns a "s" function centered in zero ! with an inifinite exponent and a zero polynom coef if(zabs(fact_k) < 1d-14) then iorder = 0 p = (1.d+14, 0.d0) fact_k = (0.d0 , 0.d0) P_new(0:max_dim,1:3) = (0.d0 , 0.d0) P_center(1:3) = (0.d0 , 0.d0) return endif !DIR$ FORCEINLINE call recentered_cpoly2(P_a(0,1), Ap_center(1), P_center(1), a(1), P_b(0,1), Bp_center(1), P_center(1), b(1)) iorder(1) = a(1) + b(1) do i = 0, iorder(1) P_new(i,1) = 0.d0 enddo n_new = 0 !DIR$ FORCEINLINE call multiply_cpoly(P_a(0,1), a(1), P_b(0,1), b(1), P_new(0,1), n_new) !DIR$ FORCEINLINE call recentered_cpoly2(P_a(0,2), Ap_center(2), P_center(2), a(2), P_b(0,2), Bp_center(2), P_center(2), b(2)) iorder(2) = a(2) + b(2) do i = 0, iorder(2) P_new(i,2) = 0.d0 enddo n_new = 0 !DIR$ FORCEINLINE call multiply_cpoly(P_a(0,2), a(2), P_b(0,2), b(2), P_new(0,2), n_new) !DIR$ FORCEINLINE call recentered_cpoly2(P_a(0,3), Ap_center(3), P_center(3), a(3), P_b(0,3), Bp_center(3), P_center(3), b(3)) iorder(3) = a(3) + b(3) do i = 0, iorder(3) P_new(i,3) = 0.d0 enddo n_new = 0 !DIR$ FORCEINLINE call multiply_cpoly(P_a(0,3), a(3), P_b(0,3), b(3), P_new(0,3), n_new) end ! --- subroutine cgaussian_product(a, xa, b, xb, k, p, xp) BEGIN_DOC ! complex Gaussian product ! e^{-a (r-r_A)^2} e^{-b (r-r_B)^2} = k e^{-p (r-r_P)^2} END_DOC implicit none complex*16, intent(in) :: a, b, xa(3), xb(3) complex*16, intent(out) :: p, k, xp(3) complex*16 :: p_inv, xab(3), ab !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xab ASSERT (real(a) > 0.) ASSERT (real(b) > 0.) ! new exponent p = a + b xab(1) = xa(1) - xb(1) xab(2) = xa(2) - xb(2) xab(3) = xa(3) - xb(3) p_inv = (1.d0, 0.d0) / p ab = a * b * p_inv k = ab * (xab(1)*xab(1) + xab(2)*xab(2) + xab(3)*xab(3)) if(real(k) .gt. 40.d0) then k = (0.d0, 0.d0) xp(1:3) = (0.d0, 0.d0) return endif k = zexp(-k) xp(1) = (a * xa(1) + b * xb(1)) * p_inv xp(2) = (a * xa(2) + b * xb(2)) * p_inv xp(3) = (a * xa(3) + b * xb(3)) * p_inv return end ! --- subroutine cgaussian_product_x(a, xa, b, xb, k, p, xp) BEGIN_DOC ! complex Gaussian product in 1D. ! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K e^{-p (x-x_P)^2} END_DOC implicit none complex*16, intent(in) :: a, b, xa, xb complex*16, intent(out) :: p, k, xp complex*16 :: p_inv complex*16 :: xab, ab ASSERT (real(a) > 0.) ASSERT (real(b) > 0.) ! new center p = a + b xab = xa - xb p_inv = (1.d0, 0.d0) / p ab = a * b * p_inv k = ab * xab * xab if(real(k) > 40.d0) then k = (0.d0, 0.d0) xp = (0.d0, 0.d0) return endif k = zexp(-k) xp = (a*xa + b*xb) * p_inv end ! --- subroutine multiply_cpoly(b, nb, c, nc, d, nd) BEGIN_DOC ! Multiply two complex polynomials ! D(t) += B(t) * C(t) END_DOC implicit none integer, intent(in) :: nb, nc complex*16, intent(in) :: b(0:nb), c(0:nc) complex*16, intent(inout) :: d(0:nb+nc) integer, intent(out) :: nd integer :: ndtmp, ib, ic if(ior(nc, nb) >= 0) then ! True if nc>=0 and nb>=0 continue else return endif ndtmp = nb + nc do ic = 0, nc d(ic) = d(ic) + c(ic) * b(0) enddo do ib = 1, nb d(ib) = d(ib) + c(0) * b(ib) do ic = 1, nc d(ib+ic) = d(ib+ic) + c(ic) * b(ib) enddo enddo do nd = ndtmp, 0, -1 if(abs(d(nd)) .lt. 1.d-15) cycle exit enddo end ! --- subroutine add_cpoly(b, nb, c, nc, d, nd) BEGIN_DOC ! Add two complex polynomials ! D(t) += B(t) + C(t) END_DOC implicit none complex*16, intent(in) :: b(0:nb), c(0:nc) integer, intent(inout) :: nb, nc integer, intent(out) :: nd complex*16, intent(out) :: d(0:nb+nc) integer :: ib complex*16 :: tmp nd = nb + nc do ib = 0, max(nb, nc) d(ib) = d(ib) + c(ib) + b(ib) enddo tmp = d(nd) do while( (zabs(tmp) .lt. 1.d-15) .and. (nd >= 0) ) nd -= 1 tmp = d(nd) if(nd < 0) exit enddo end ! --- subroutine add_cpoly_multiply(b, nb, cst, d, nd) BEGIN_DOC ! Add a complex polynomial multiplied by a complex constant ! D(t) += cst * B(t) END_DOC implicit none integer, intent(in) :: nb complex*16, intent(in) :: b(0:nb), cst integer, intent(inout) :: nd complex*16, intent(inout) :: d(0:max(nb, nd)) integer :: ib complex*16 :: tmp nd = max(nd, nb) if(nd /= -1) then do ib = 0, nb d(ib) = d(ib) + cst * b(ib) enddo tmp = d(nd) do while(zabs(tmp) .lt. 1.d-15) nd -= 1 if(nd < 0) exit tmp = d(nd) enddo endif end ! --- subroutine recentered_cpoly2(P_A, x_A, x_P, a, P_B, x_B, x_Q, b) BEGIN_DOC ! ! write two complex polynomials (x-x_A)^a (x-x_B)^b ! as P_A(x-x_P) and P_B(x-x_Q) ! END_DOC implicit none integer, intent(in) :: a, b complex*16, intent(in) :: x_A, x_P, x_B, x_Q complex*16, intent(out) :: P_A(0:a), P_B(0:b) integer :: i integer :: maxbinom complex*16 :: pows_a(0:a+b+2), pows_b(0:a+b+2) double precision :: binom_func if((a < 0) .or. (b < 0)) return maxbinom = size(binom_transp, 1) pows_a(0) = (1.d0, 0.d0) pows_a(1) = x_P - x_A do i = 2, a pows_a(i) = pows_a(i-1) * pows_a(1) enddo pows_b(0) = (1.d0, 0.d0) pows_b(1) = x_Q - x_B do i = 2, b pows_b(i) = pows_b(i-1) * pows_b(1) enddo P_A(0) = pows_a(a) do i = 1, min(a, maxbinom) P_A(i) = binom_transp(i,a) * pows_a(a-i) enddo do i = maxbinom+1, a P_A(i) = binom_func(a, i) * pows_a(a-i) enddo P_B(0) = pows_b(b) do i = 1, min(b, maxbinom) P_B(i) = binom_transp(i,b) * pows_b(b-i) enddo do i = maxbinom+1, b P_B(i) = binom_func(b, i) * pows_b(b-i) enddo end ! --- complex*16 function Fc_integral(n, inv_sq_p) BEGIN_DOC ! function that calculates the following integral ! \int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx ! for complex valued p END_DOC implicit none include 'constants.include.F' integer, intent(in) :: n complex*16, intent(in) :: inv_sq_p complex*16 :: inv_sq_p2, inv_sq_p3, inv_sq_p4 ! (n)! double precision, external :: fact if(n < 0) then Fc_integral = (0.d0, 0.d0) return endif ! odd n if(iand(n, 1) .ne. 0) then Fc_integral = (0.d0, 0.d0) return endif select case(n) case(0) Fc_integral = sqpi * inv_sq_p case(2) Fc_integral = 0.5d0 * sqpi * inv_sq_p * inv_sq_p * inv_sq_p case(4) inv_sq_p2 = inv_sq_p * inv_sq_p Fc_integral = 0.75d0 * sqpi * inv_sq_p * inv_sq_p2 * inv_sq_p2 case(6) inv_sq_p3 = inv_sq_p * inv_sq_p * inv_sq_p Fc_integral = 1.875d0 * sqpi * inv_sq_p * inv_sq_p3 * inv_sq_p3 case(8) inv_sq_p3 = inv_sq_p * inv_sq_p * inv_sq_p Fc_integral = 6.5625d0 * sqpi * inv_sq_p3 * inv_sq_p3 * inv_sq_p3 case(10) inv_sq_p2 = inv_sq_p * inv_sq_p inv_sq_p4 = inv_sq_p2 * inv_sq_p2 Fc_integral = 29.53125d0 * sqpi * inv_sq_p * inv_sq_p2 * inv_sq_p4 * inv_sq_p4 case default Fc_integral = 2.d0 * sqpi * (0.5d0 * inv_sq_p)**(n+1) * fact(n) / fact(shiftr(n, 1)) end select return end ! ---