subroutine two_rdm_ab_nstates(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze) use bitmasks implicit none BEGIN_DOC ! Computes the alpha/beta part of the two-body density matrix IN CHEMIST NOTATIONS ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC integer, intent(in) :: N_st,sze integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: u_0(sze,N_st) integer :: k double precision, allocatable :: u_t(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t allocate(u_t(N_st,N_det)) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) enddo call dtranspose( & u_0, & size(u_0, 1), & u_t, & size(u_t, 1), & N_det, N_st) call two_rdm_ab_nstates_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1) deallocate(u_t) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) enddo end subroutine two_rdm_ab_nstates_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC ! Computes the alpha/beta part of the two-body density matrix ! ! Default should be 1,N_det,0,1 END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) double precision, intent(in) :: u_t(N_st,N_det) PROVIDE N_int select case (N_int) case (1) call two_rdm_ab_nstates_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (2) call two_rdm_ab_nstates_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (3) call two_rdm_ab_nstates_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (4) call two_rdm_ab_nstates_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case default call two_rdm_ab_nstates_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) end select end BEGIN_TEMPLATE subroutine two_rdm_ab_nstates_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states) double precision, intent(in) :: u_t(N_st,N_det) double precision :: hij, sij integer :: i,j,k,l integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: istate integer :: krow, kcol, krow_b, kcol_b integer :: lrow, lcol integer :: mrow, mcol integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det3($N_int,2) integer(bit_kind), allocatable :: buffer(:,:) integer :: n_doubles integer, allocatable :: doubles(:) integer, allocatable :: singles_a(:) integer, allocatable :: singles_b(:) integer, allocatable :: idx(:), idx0(:) integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax integer*8 :: k8 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 allocate(idx0(maxab)) do i=1,maxab idx0(i) = i enddo ! Prepare the array of all alpha single excitations ! ------------------------------------------------- PROVIDE N_int nthreads_davidson ! Alpha/Beta double excitations ! ============================= allocate( buffer($N_int,maxab), & singles_a(maxab), & singles_b(maxab), & doubles(maxab), & idx(maxab)) kcol_prev=-1 ASSERT (iend <= N_det) ASSERT (istart > 0) ASSERT (istep > 0) do k_a=istart+ishift,iend,istep krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) if (kcol /= kcol_prev) then call get_all_spin_singles_$N_int( & psi_det_beta_unique, idx0, & tmp_det(1,2), N_det_beta_unique, & singles_b, n_singles_b) endif kcol_prev = kcol ! Loop over singly excited beta columns ! ------------------------------------- do i=1,n_singles_b lcol = singles_b(i) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) l_a = psi_bilinear_matrix_columns_loc(lcol) ASSERT (l_a <= N_det) do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ASSERT (l_a <= N_det) idx(j) = l_a l_a = l_a+1 enddo j = j-1 call get_all_spin_singles_$N_int( & buffer, idx, tmp_det(1,1), j, & singles_a, n_singles_a ) ! Loop over alpha singles ! ----------------------- do k = 1,n_singles_a l_a = singles_a(k) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) !!!!!!!!!!!!!!!!!! ALPHA BETA do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) enddo call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) enddo enddo enddo do k_a=istart+ishift,iend,istep ! Single and double alpha excitations ! =================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) ! Initial determinant is at k_b in beta-major representation ! ---------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) spindet(1:$N_int) = tmp_det(1:$N_int,1) ! Loop inside the beta column to gather all the connected alphas lcol = psi_bilinear_matrix_columns(k_a) l_a = psi_bilinear_matrix_columns_loc(lcol) do i=1,N_det_alpha_unique if (l_a > N_det) exit lcol = psi_bilinear_matrix_columns(l_a) if (lcol /= kcol) exit lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) idx(i) = l_a l_a = l_a+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_a, doubles, n_singles_a, n_doubles ) ! Compute Hij for all alpha singles ! ---------------------------------- tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) do i=1,n_singles_a l_a = singles_a(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) !!!! MONO SPIN do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) enddo call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) enddo !! Compute Hij for all alpha doubles !! ---------------------------------- ! !do i=1,n_doubles ! l_a = doubles(i) ! ASSERT (l_a <= N_det) ! lrow = psi_bilinear_matrix_rows(l_a) ! ASSERT (lrow <= N_det_alpha_unique) ! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij) ! do l=1,N_st ! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) ! ! same spin => sij = 0 ! enddo !enddo ! Single and double beta excitations ! ================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) kcol = psi_bilinear_matrix_columns(k_a) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) spindet(1:$N_int) = tmp_det(1:$N_int,2) ! Initial determinant is at k_b in beta-major representation ! ----------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ! Loop inside the alpha row to gather all the connected betas lrow = psi_bilinear_matrix_transp_rows(k_b) l_b = psi_bilinear_matrix_transp_rows_loc(lrow) do i=1,N_det_beta_unique if (l_b > N_det) exit lrow = psi_bilinear_matrix_transp_rows(l_b) if (lrow /= krow) exit lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) idx(i) = l_b l_b = l_b+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_b, doubles, n_singles_b, n_doubles ) ! Compute Hij for all beta singles ! ---------------------------------- tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) do i=1,n_singles_b l_b = singles_b(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) l_a = psi_bilinear_matrix_transp_order(l_b) do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) enddo call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4) ASSERT (l_a <= N_det) enddo ! !! Compute Hij for all beta doubles !! ---------------------------------- ! !do i=1,n_doubles ! l_b = doubles(i) ! ASSERT (l_b <= N_det) ! lcol = psi_bilinear_matrix_transp_columns(l_b) ! ASSERT (lcol <= N_det_beta_unique) ! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij) ! l_a = psi_bilinear_matrix_transp_order(l_b) ! ASSERT (l_a <= N_det) ! do l=1,N_st ! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a) ! ! same spin => sij = 0 ! enddo !enddo ! Diagonal contribution ! ===================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem double precision :: c_1(N_states),c_2(N_states) do l = 1, N_states c_1(l) = u_t(l,k_a) enddo call diagonal_contrib_to_two_rdm_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4) end do deallocate(buffer, singles_a, singles_b, doubles, idx) end SUBST [ N_int ] 1;; 2;; 3;; 4;; N_int;; END_TEMPLATE