BEGIN_PROVIDER [double precision, all_states_act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none BEGIN_DOC ! all_states_act_two_rdm_alpha_alpha_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha electrons ! ! 1/2 * ! ! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act" END_DOC integer :: ispin ! condition for alpha/beta spin ispin = 1 all_states_act_two_rdm_alpha_alpha_mo = 0.D0 call orb_range_all_states_two_rdm(all_states_act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER BEGIN_PROVIDER [double precision, all_states_act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none BEGIN_DOC ! all_states_act_two_rdm_beta_beta_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of beta electrons ! ! ! ! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act" END_DOC integer :: ispin ! condition for alpha/beta spin ispin = 2 all_states_act_two_rdm_beta_beta_mo = 0.d0 call orb_range_all_states_two_rdm(all_states_act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER BEGIN_PROVIDER [double precision, all_states_act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none BEGIN_DOC ! all_states_act_two_rdm_alpha_beta_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of alpha/beta electrons ! ! ! ! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act" ! ! !!!!! WARNING !!!!! For efficiency reasons, electron 1 is alpha, electron 2 is beta ! ! all_states_act_two_rdm_alpha_beta_mo(i,j,k,l,istate) = i:alpha, j:beta, j:alpha, l:beta ! ! Therefore you don't necessayr have symmetry between electron 1 and 2 END_DOC integer :: ispin double precision :: wall_1, wall_2 ! condition for alpha/beta spin print*,'' print*,'' print*,'' print*,'providint all_states_act_two_rdm_alpha_beta_mo ' ispin = 3 print*,'ispin = ',ispin all_states_act_two_rdm_alpha_beta_mo = 0.d0 call wall_time(wall_1) call orb_range_all_states_two_rdm(all_states_act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) call wall_time(wall_2) print*,'Wall time to provide all_states_act_two_rdm_alpha_beta_mo',wall_2 - wall_1 END_PROVIDER BEGIN_PROVIDER [double precision, all_states_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states)] implicit none BEGIN_DOC ! all_states_act_two_rdm_spin_trace_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM ! ! \sum_{\sigma, \sigma'} ! ! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act" ! ! The active part of the two-electron energy for the state istate can be computed as: ! ! \sum_{i,j,k,l = 1, n_act_orb} all_states_act_two_rdm_spin_trace_mo(i,j,k,l,istate) * < ii jj | kk ll > ! ! with ii = list_act(i), jj = list_act(j), kk = list_act(k), ll = list_act(l) END_DOC integer :: ispin,i,j,k,l,istate ! condition for alpha/beta spin ispin = 4 all_states_act_two_rdm_spin_trace_mo = 0.d0 call orb_range_all_states_two_rdm(all_states_act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1)) END_PROVIDER