subroutine do_single_excitation(key_in,i_hole,i_particle,ispin,i_ok) implicit none BEGIN_DOC ! Apply the single excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin ! on key_in ! ispin = 1 == alpha ! ispin = 2 == beta ! i_ok = 1 == the excitation is possible ! i_ok = -1 == the excitation is not possible END_DOC integer, intent(in) :: i_hole,i_particle,ispin integer(bit_kind), intent(inout) :: key_in(N_int,2) integer, intent(out) :: i_ok integer :: k,j,i integer(bit_kind) :: mask use bitmasks ASSERT (i_hole > 0 ) ASSERT (i_particle <= mo_num) i_ok = 1 ! hole k = shiftr(i_hole-1,bit_kind_shift)+1 j = i_hole-shiftl(k-1,bit_kind_shift)-1 mask = ibset(0_bit_kind,j) ! check whether position j is occupied if (iand(key_in(k,ispin),mask) /= 0_bit_kind) then key_in(k,ispin) = ibclr(key_in(k,ispin),j) else i_ok= -1 return end if ! particle k = shiftr(i_particle-1,bit_kind_shift)+1 j = i_particle-shiftl(k-1,bit_kind_shift)-1 mask = ibset(0_bit_kind,j) if (iand(key_in(k,ispin),mask) == 0_bit_kind) then key_in(k,ispin) = ibset(key_in(k,ispin),j) else i_ok= -1 return end if ! integer :: n_elec_tmp ! n_elec_tmp = 0 ! do i = 1, N_int ! n_elec_tmp += popcnt(key_in(i,1)) + popcnt(key_in(i,2)) ! enddo ! if(n_elec_tmp .ne. elec_num)then ! print*, n_elec_tmp,elec_num ! call debug_det(key_in,N_int) ! stop -1 ! endif end subroutine build_singly_excited_wavefunction(i_hole,i_particle,ispin,det_out,coef_out) implicit none BEGIN_DOC ! Applies the single excitation operator : a^{dager}_(i_particle) a_(i_hole) of ! spin = ispin to the current wave function (psi_det, psi_coef) END_DOC integer, intent(in) :: i_hole,i_particle,ispin integer(bit_kind), intent(out) :: det_out(N_int,2,N_det) double precision, intent(out) :: coef_out(N_det,N_states) integer :: k integer :: i_ok double precision :: phase do k=1,N_det coef_out(k,:) = psi_coef(k,:) det_out(:,:,k) = psi_det(:,:,k) call do_single_excitation(det_out(1,1,k),i_hole,i_particle,ispin,i_ok) if (i_ok == 1) then call get_phase(psi_det(1,1,k), det_out(1,1,k),phase,N_int) coef_out(k,:) = phase * coef_out(k,:) else coef_out(k,:) = 0.d0 det_out(:,:,k) = psi_det(:,:,k) endif enddo end logical function is_spin_flip_possible(key_in,i_flip,ispin) implicit none BEGIN_DOC ! returns |true| if the spin-flip of spin ispin in the orbital i_flip is possible ! on key_in END_DOC integer, intent(in) :: i_flip,ispin integer(bit_kind), intent(in) :: key_in(N_int,2) integer :: k,j,i integer(bit_kind) :: key_tmp(N_int,2) is_spin_flip_possible = .False. key_tmp = 0_bit_kind k = shiftr(i_flip-1,bit_kind_shift)+1 j = i_flip-shiftl(k-1,bit_kind_shift)-1 key_tmp(k,1) = ibset(key_tmp(k,1),j) integer :: other_spin(2) other_spin(1) = 2 other_spin(2) = 1 if(popcnt(iand(key_tmp(k,1),key_in(k,ispin))) == 1 .and. popcnt(iand(key_tmp(k,1),key_in(k,other_spin(ispin)))) == 0 )then ! There is a spin "ispin" in the orbital i_flip AND There is no electron of opposit spin in the same orbital "i_flip" is_spin_flip_possible = .True. return else return endif end subroutine do_single_excitation_cfg(key_in,key_out,i_hole,i_particle,ok) use bitmasks implicit none BEGIN_DOC ! Applies the signle excitation operator to a configuration ! If the excitation is possible, ok is True END_DOC integer, intent(in) :: i_hole,i_particle integer(bit_kind), intent(in) :: key_in(N_int,2) logical , intent(out) :: ok integer :: k,j,i integer(bit_kind) :: mask integer(bit_kind) :: key_out(N_int,2) ASSERT (i_hole > 0) ASSERT (i_particle <= mo_num) ok = .True. key_out(:,:) = key_in(:,:) ! hole k = shiftr(i_hole-1,bit_kind_shift)+1 j = i_hole-shiftl(k-1,bit_kind_shift)-1 mask = ibset(0_bit_kind,j) ! Check if the position j is singly occupied ! 1 -> 0 (SOMO) ! 0 0 (DOMO) if (iand(key_out(k,1),mask) /= 0_bit_kind) then key_out(k,1) = ibclr(key_out(k,1),j) ! Check if the position j is doubly occupied ! 0 -> 1 (SOMO) ! 1 0 (DOMO) else if (iand(key_out(k,2),mask) /= 0_bit_kind) then key_out(k,1) = ibset(key_out(k,1),j) key_out(k,2) = ibclr(key_out(k,2),j) ! The position j is unoccupied: Not OK ! 0 -> 0 (SOMO) ! 0 0 (DOMO) else ok =.False. return endif ! particle k = shiftr(i_particle-1,bit_kind_shift)+1 j = i_particle-shiftl(k-1,bit_kind_shift)-1 mask = ibset(0_bit_kind,j) ! Check if the position j is singly occupied ! 1 -> 0 (SOMO) ! 0 1 (DOMO) if (iand(key_out(k,1),mask) /= 0_bit_kind) then key_out(k,1) = ibclr(key_out(k,1),j) key_out(k,2) = ibset(key_out(k,2),j) ! Check if the position j is doubly occupied : Not OK ! 0 -> 1 (SOMO) ! 1 0 (DOMO) else if (iand(key_out(k,2),mask) /= 0_bit_kind) then ok = .False. return ! Position at j is unoccupied ! 0 -> 0 (SOMO) ! 0 0 (DOMO) else key_out(k,1) = ibset(key_out(k,1),j) endif end subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint) implicit none use bitmasks BEGIN_DOC ! Generate all single excitation wrt a configuration ! ! n_singles : on input, max number of singles : ! elec_alpha_num * (mo_num - elec_beta_num) ! on output, number of generated singles END_DOC integer, intent(in) :: Nint integer, intent(inout) :: n_singles integer(bit_kind), intent(in) :: cfg(Nint,2) integer(bit_kind), intent(out) :: singles(Nint,2,*) integer :: i,k, n_singles_ma, i_hole, i_particle integer(bit_kind) :: single(Nint,2) logical :: i_ok n_singles = 0 !TODO !Make list of Somo and Domo for holes !Make list of Unocc and Somo for particles do i_hole = 1, mo_num do i_particle = 1, mo_num call do_single_excitation_cfg(cfg,single,i_hole,i_particle,i_ok) if (i_ok) then n_singles = n_singles + 1 do k=1,Nint singles(k,1,n_singles) = single(k,1) singles(k,2,n_singles) = single(k,2) enddo endif enddo enddo end