! modified from H_S2_u_0_nstates_openmp in Davidson/u0Hu0.irp.f subroutine H_u_0_openmp(v_0,u_0,sze) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = H|u_0> ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC integer :: N_st=1 integer, intent(in) :: sze complex*16, intent(inout) :: v_0(sze), u_0(sze) integer :: k call cdset_order(u_0(1),psi_bilinear_matrix_order,N_det) v_0 = (0.d0,0.d0) call h_u_0_openmp_work(v_0,u_0,sze,1,N_det,0,1) call cdset_order(v_0(1),psi_bilinear_matrix_order_reverse,N_det) call cdset_order(u_0(1),psi_bilinear_matrix_order_reverse,N_det) end subroutine H_u_0_openmp_work(v_t,u_t,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC ! Computes v_t = H|u_t> ! ! Default should be 1,N_det,0,1 END_DOC integer :: N_st=1 integer, intent(in) :: sze,istart,iend,ishift,istep complex*16, intent(in) :: u_t(N_det) complex*16, intent(out) :: v_t(sze) PROVIDE ref_bitmask_energy N_int select case (N_int) case (1) call H_u_0_openmp_work_1(v_t,u_t,sze,istart,iend,ishift,istep) case (2) call H_u_0_openmp_work_2(v_t,u_t,sze,istart,iend,ishift,istep) case (3) call H_u_0_openmp_work_3(v_t,u_t,sze,istart,iend,ishift,istep) case (4) call H_u_0_openmp_work_4(v_t,u_t,sze,istart,iend,ishift,istep) case default call H_u_0_openmp_work_N_int(v_t,u_t,sze,istart,iend,ishift,istep) end select end BEGIN_TEMPLATE subroutine H_u_0_openmp_work_$N_int(v_t,u_t,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC ! Computes v_t = H|u_t> ! ! Default should be 1,N_det,0,1 END_DOC integer :: N_st=1 integer, intent(in) :: sze,istart,iend,ishift,istep complex*16, intent(in) :: u_t(N_det) complex*16, intent(out) :: v_t(sze) complex*16 :: hij double precision :: hii integer :: i,j,k,l integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: istate integer :: krow, kcol, krow_b, kcol_b integer :: lrow, lcol integer :: mrow, mcol integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det3($N_int,2) integer(bit_kind), allocatable :: buffer(:,:) integer :: n_doubles integer, allocatable :: doubles(:) integer, allocatable :: singles_a(:) integer, allocatable :: singles_b(:) integer, allocatable :: idx(:), idx0(:) integer :: maxab, n_singles_a, n_singles_b, kcol_prev integer*8 :: k8 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 allocate(idx0(maxab)) do i=1,maxab idx0(i) = i enddo ! Prepare the array of all alpha single excitations ! ------------------------------------------------- PROVIDE N_int nthreads_davidson !$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) & !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & !$OMP psi_bilinear_matrix_columns, & !$OMP psi_det_alpha_unique, psi_det_beta_unique, & !$OMP n_det_alpha_unique, n_det_beta_unique, N_int, & !$OMP psi_bilinear_matrix_transp_rows, & !$OMP psi_bilinear_matrix_transp_columns, & !$OMP psi_bilinear_matrix_transp_order, N_st, & !$OMP psi_bilinear_matrix_order_transp_reverse, & !$OMP psi_bilinear_matrix_columns_loc, & !$OMP psi_bilinear_matrix_transp_rows_loc, & !$OMP istart, iend, istep, irp_here, v_t, & !$OMP ishift, idx0, u_t, maxab) & !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, & !$OMP lcol, lrow, l_a, l_b, & !$OMP buffer, doubles, n_doubles, & !$OMP tmp_det2, hii, hij, idx, l, kcol_prev, & !$OMP singles_a, n_singles_a, singles_b, & !$OMP n_singles_b, k8) ! Alpha/Beta double excitations ! ============================= allocate( buffer($N_int,maxab), & singles_a(maxab), & singles_b(maxab), & doubles(maxab), & idx(maxab)) kcol_prev=-1 ASSERT (iend <= N_det) ASSERT (istart > 0) ASSERT (istep > 0) !$OMP DO SCHEDULE(dynamic,64) do k_a=istart+ishift,iend,istep krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) if (kcol /= kcol_prev) then call get_all_spin_singles_$N_int( & psi_det_beta_unique, idx0, & tmp_det(1,2), N_det_beta_unique, & singles_b, n_singles_b) endif kcol_prev = kcol ! Loop over singly excited beta columns ! ------------------------------------- do i=1,n_singles_b lcol = singles_b(i) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) l_a = psi_bilinear_matrix_columns_loc(lcol) ASSERT (l_a <= N_det) do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ASSERT (l_a <= N_det) idx(j) = l_a l_a = l_a+1 enddo j = j-1 call get_all_spin_singles_$N_int( & buffer, idx, tmp_det(1,1), j, & singles_a, n_singles_a ) ! Loop over alpha singles ! ----------------------- do k = 1,n_singles_a l_a = singles_a(k) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) call i_h_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij) v_t(k_a) = v_t(k_a) + hij * u_t(l_a) enddo enddo enddo !$OMP END DO !$OMP DO SCHEDULE(dynamic,64) do k_a=istart+ishift,iend,istep ! Single and double alpha excitations ! =================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) ! Initial determinant is at k_b in beta-major representation ! ---------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) spindet(1:$N_int) = tmp_det(1:$N_int,1) ! Loop inside the beta column to gather all the connected alphas lcol = psi_bilinear_matrix_columns(k_a) l_a = psi_bilinear_matrix_columns_loc(lcol) do i=1,N_det_alpha_unique if (l_a > N_det) exit lcol = psi_bilinear_matrix_columns(l_a) if (lcol /= kcol) exit lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) idx(i) = l_a l_a = l_a+1 enddo i = i-1 !call get_all_spin_singles_and_doubles_$N_int( & ! buffer, idx, spindet, i, & ! singles_a, doubles, n_singles_a, n_doubles ) call get_all_spin_singles_and_doubles( & buffer, idx, spindet, $N_int, i, & singles_a, doubles, n_singles_a, n_doubles ) ! Compute Hij for all alpha singles ! ---------------------------------- tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) do i=1,n_singles_a l_a = singles_a(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) call i_H_j_mono_spin( tmp_det, tmp_det2, $N_int, 1, hij) v_t(k_a) = v_t(k_a) + hij * u_t(l_a) enddo ! Compute Hij for all alpha doubles ! ---------------------------------- do i=1,n_doubles l_a = doubles(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij) v_t(k_a) = v_t(k_a) + hij * u_t(l_a) enddo ! Single and double beta excitations ! ================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) kcol = psi_bilinear_matrix_columns(k_a) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) spindet(1:$N_int) = tmp_det(1:$N_int,2) ! Initial determinant is at k_b in beta-major representation ! ----------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) ! Loop inside the alpha row to gather all the connected betas lrow = psi_bilinear_matrix_transp_rows(k_b) l_b = psi_bilinear_matrix_transp_rows_loc(lrow) do i=1,N_det_beta_unique if (l_b > N_det) exit lrow = psi_bilinear_matrix_transp_rows(l_b) if (lrow /= krow) exit lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) idx(i) = l_b l_b = l_b+1 enddo i = i-1 !call get_all_spin_singles_and_doubles_$N_int( & ! buffer, idx, spindet, i, & ! singles_b, doubles, n_singles_b, n_doubles ) call get_all_spin_singles_and_doubles( & buffer, idx, spindet, $N_int, i, & singles_b, doubles, n_singles_b, n_doubles ) ! Compute Hij for all beta singles ! ---------------------------------- tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) do i=1,n_singles_b l_b = singles_b(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) call i_H_j_mono_spin( tmp_det, tmp_det2, $N_int, 2, hij) l_a = psi_bilinear_matrix_transp_order(l_b) ASSERT (l_a <= N_det) v_t(k_a) = v_t(k_a) + hij * u_t(l_a) enddo ! Compute Hij for all beta doubles ! ---------------------------------- do i=1,n_doubles l_b = doubles(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij) l_a = psi_bilinear_matrix_transp_order(l_b) ASSERT (l_a <= N_det) v_t(k_a) = v_t(k_a) + hij * u_t(l_a) enddo ! Diagonal contribution ! ===================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) !double precision, external :: diag_H_mat_elem, diag_S_mat_elem double precision, external :: diag_H_mat_elem hii = diag_H_mat_elem(tmp_det,$N_int) v_t(k_a) = v_t(k_a) + hii * u_t(k_a) end do !$OMP END DO deallocate(buffer, singles_a, singles_b, doubles, idx) !$OMP END PARALLEL end SUBST [ N_int ] 1;; 2;; 3;; 4;; N_int;; END_TEMPLATE