! --- subroutine davidson_diag_nonsym_h(dets_in, u_in, dim_in, energies, sze, N_st, N_st_diag, Nint, dressing_state, converged) BEGIN_DOC ! ! non-sym Davidson diagonalization. ! ! dets_in : bitmasks corresponding to determinants ! ! u_in : guess coefficients on the various states. Overwritten on exit ! ! dim_in : leftmost dimension of u_in ! ! sze : Number of determinants ! ! N_st : Number of eigenstates ! ! Initial guess vectors are not necessarily orthonormal ! END_DOC use bitmasks implicit none integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint integer, intent(in) :: dressing_state integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) logical, intent(out) :: converged double precision, intent(out) :: energies(N_st_diag) double precision, intent(inout) :: u_in(dim_in,N_st_diag) integer :: i, k, l double precision :: f double precision, allocatable :: H_jj(:) double precision, external :: diag_H_mat_elem ASSERT (N_st > 0) ASSERT (sze > 0) ASSERT (Nint > 0) ASSERT (Nint == N_int) PROVIDE mo_two_e_integrals_in_map allocate(H_jj(sze)) H_jj(1) = diag_H_mat_elem(dets_in(1,1,1), Nint) !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(sze, H_jj, dets_in, Nint) & !$OMP PRIVATE(i) !$OMP DO SCHEDULE(static) do i = 2, sze H_jj(i) = diag_H_mat_elem(dets_in(1,1,i), Nint) enddo !$OMP END DO !$OMP END PARALLEL if(dressing_state > 0) then do k = 1, N_st do l = 1, N_st f = overlap_states_inv(k,l) !do i = 1, N_det ! H_jj(i) += f * dressing_delta(i,k) * psi_coef(i,l) do i = 1, dim_in H_jj(i) += f * dressing_delta(i,k) * u_in(i,l) enddo enddo enddo endif call davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag, Nint, dressing_state, converged) deallocate(H_jj) end subroutine davidson_diag_nonsym_h ! --- subroutine davidson_diag_nonsym_hjj(dets_in, u_in, H_jj, energies, dim_in, sze, N_st, N_st_diag_in, Nint, dressing_state, converged) BEGIN_DOC ! ! non-sym Davidson diagonalization with specific diagonal elements of the H matrix ! ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson ! ! dets_in : bitmasks corresponding to determinants ! ! u_in : guess coefficients on the various states. Overwritten on exit ! ! dim_in : leftmost dimension of u_in ! ! sze : Number of determinants ! ! N_st : Number of eigenstates ! ! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze ! ! Initial guess vectors are not necessarily orthonormal ! END_DOC include 'constants.include.F' use bitmasks use mmap_module implicit none integer, intent(in) :: dim_in, sze, N_st, N_st_diag_in, Nint integer, intent(in) :: dressing_state integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) double precision, intent(in) :: H_jj(sze) double precision, intent(out) :: energies(N_st_diag_in) logical, intent(inout) :: converged double precision, intent(inout) :: u_in(dim_in,N_st_diag_in) logical :: disk_based character*(16384) :: write_buffer integer :: i, j, k, l, m integer :: iter, N_st_diag, itertot, shift, shift2, itermax, istate integer :: nproc_target integer :: order(N_st_diag_in) integer :: maxab double precision :: rss double precision :: cmax double precision :: to_print(2,N_st) double precision :: r1, r2 double precision :: f double precision, allocatable :: y(:,:), h(:,:), lambda(:) double precision, allocatable :: s_tmp(:,:), u_tmp(:,:) double precision, allocatable :: residual_norm(:) double precision, allocatable :: U(:,:), overlap(:,:) double precision, pointer :: W(:,:) double precision, external :: u_dot_u N_st_diag = N_st_diag_in !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda if(N_st_diag*3 > sze) then print *, 'error in Davidson :' print *, 'Increase n_det_max_full to ', N_st_diag*3 stop -1 endif itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1 itertot = 0 if(state_following) then allocate(overlap(N_st_diag*itermax, N_st_diag*itermax)) else allocate(overlap(1,1)) ! avoid 'if' for deallocate endif overlap = 0.d0 PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2 threshold_davidson_from_pt2 PROVIDE threshold_nonsym_davidson call write_time(6) write(6,'(A)') '' write(6,'(A)') 'Davidson Diagonalization' write(6,'(A)') '------------------------' write(6,'(A)') '' ! Find max number of cores to fit in memory ! ----------------------------------------- nproc_target = nproc maxab = max(N_det_alpha_unique, N_det_beta_unique) + 1 m=1 disk_based = .False. call resident_memory(rss) do r1 = 8.d0 * &! bytes ( dble(sze)*(N_st_diag*itermax) &! U + 1.0d0*dble(sze*m)*(N_st_diag*itermax) &! W + 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp + 1.d0*(N_st_diag*itermax) &! lambda + 1.d0*(N_st_diag) &! residual_norm ! In H_u_0_nstates_zmq + 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector + 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave + 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_* + nproc_target * &! In OMP section ( 1.d0*(N_int*maxab) &! buffer + 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx ) / 1024.d0**3 if(nproc_target == 0) then call check_mem(r1, irp_here) nproc_target = 1 exit endif if(r1+rss < qp_max_mem) then exit endif if(itermax > 4) then itermax = itermax - 1 else if(m==1 .and. disk_based_davidson) then m = 0 disk_based = .True. itermax = 6 else nproc_target = nproc_target - 1 endif enddo nthreads_davidson = nproc_target TOUCH nthreads_davidson call write_int(6, N_st, 'Number of states') call write_int(6, N_st_diag, 'Number of states in diagonalization') call write_int(6, sze, 'Number of determinants') call write_int(6, nproc_target, 'Number of threads for diagonalization') call write_double(6, r1, 'Memory(Gb)') if(disk_based) then print *, 'Using swap space to reduce RAM' endif !--------------- write(6,'(A)') '' write_buffer = '=====' do i = 1, N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6, '(A)') write_buffer(1:6+41*N_st) write_buffer = 'Iter' do i = 1, N_st write_buffer = trim(write_buffer)//' Energy Residual ' enddo write(6,'(A)') write_buffer(1:6+41*N_st) write_buffer = '=====' do i = 1, N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') write_buffer(1:6+41*N_st) if(disk_based) then ! Create memory-mapped files for W and S type(c_ptr) :: ptr_w, ptr_s integer :: fd_s, fd_w call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),& 8, fd_w, .False., ptr_w) call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/)) else allocate(W(sze,N_st_diag*itermax)) endif allocate( & ! Large U(sze,N_st_diag*itermax), & ! Small h(N_st_diag*itermax,N_st_diag*itermax), & y(N_st_diag*itermax,N_st_diag*itermax), & s_tmp(N_st_diag*itermax,N_st_diag*itermax), & residual_norm(N_st_diag), & lambda(N_st_diag*itermax), & u_tmp(N_st,N_st_diag)) h = 0.d0 U = 0.d0 y = 0.d0 s_tmp = 0.d0 ASSERT (N_st > 0) ASSERT (N_st_diag >= N_st) ASSERT (sze > 0) ASSERT (Nint > 0) ASSERT (Nint == N_int) ! Davidson iterations ! =================== converged = .False. do k = N_st+1, N_st_diag do i = 1, sze call random_number(r1) call random_number(r2) r1 = dsqrt(-2.d0*dlog(r1)) r2 = dtwo_pi*r2 u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st) enddo u_in(k,k) = u_in(k,k) + 10.d0 enddo do k = 1, N_st_diag call normalize(u_in(1,k), sze) enddo do k = 1, N_st_diag do i = 1, sze U(i,k) = u_in(i,k) enddo enddo do while (.not.converged) itertot = itertot + 1 if(itertot == 8) then exit endif do iter = 1, itermax-1 shift = N_st_diag*(iter-1) shift2 = N_st_diag*iter ! if( (iter > 1) .or. (itertot == 1) ) then ! Gram-Schmidt to orthogonalize all new guess with the previous vectors call ortho_qr(U, size(U, 1), sze, shift2) call ortho_qr(U, size(U, 1), sze, shift2) ! Compute |W_k> = \sum_i |i> ! ----------------------------------- if( (sze > 100000) .and. distributed_davidson ) then call H_u_0_nstates_zmq (W(1,shift+1), U(1,shift+1), N_st_diag, sze) else call H_u_0_nstates_openmp(W(1,shift+1), U(1,shift+1), N_st_diag, sze) endif ! else ! ! Already computed in update below ! continue ! endif if(dressing_state > 0) then call dgemm( 'T', 'N', N_st, N_st_diag, sze, 1.d0 & , psi_coef, size(psi_coef, 1), U(1, shift+1), size(U, 1) & , 0.d0, u_tmp, size(u_tmp, 1)) do istate = 1, N_st_diag do k = 1, N_st do l = 1, N_st f = overlap_states_inv(k,l) do i = 1, sze W(i,shift+istate) += f * dressing_delta(i,k) * u_tmp(l,istate) enddo enddo enddo enddo endif ! Compute h_kl = = ! ------------------------------------------- call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 & , U, size(U, 1), W, size(W, 1) & , 0.d0, h, size(h, 1)) ! Diagonalize h ! --------------- call diag_nonsym_right(shift2, h(1,1), size(h, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1)) if (state_following) then overlap = -1.d0 do k = 1, shift2 do i = 1, shift2 overlap(k,i) = dabs(y(k,i)) enddo enddo do k = 1, N_st cmax = -1.d0 do i = 1, N_st if(overlap(i,k) > cmax) then cmax = overlap(i,k) order(k) = i endif enddo do i = 1, N_st_diag overlap(order(k),i) = -1.d0 enddo enddo overlap = y do k = 1, N_st l = order(k) if (k /= l) then y(1:shift2,k) = overlap(1:shift2,l) endif enddo do k = 1, N_st overlap(k,1) = lambda(k) enddo endif ! Express eigenvectors of h in the determinant basis ! -------------------------------------------------- call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & , U, size(U, 1), y, size(y, 1) & , 0.d0, U(1,shift2+1), size(U, 1)) do k = 1, N_st_diag call normalize(U(1,shift2+k), sze) enddo call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & , W, size(W, 1), y, size(y, 1) & , 0.d0, W(1,shift2+1), size(W,1)) ! Compute residual vector and davidson step ! ----------------------------------------- !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k) do k = 1, N_st_diag do i = 1, sze U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2) enddo if(k <= N_st) then residual_norm(k) = u_dot_u(U(1,shift2+k), sze) to_print(1,k) = lambda(k) + nuclear_repulsion to_print(2,k) = residual_norm(k) endif enddo !$OMP END PARALLEL DO if((itertot>1).and.(iter == 1)) then !don't print continue else write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, ES11.3))') iter-1, to_print(1:2,1:N_st) endif ! Check convergence if(iter > 1) then if(threshold_davidson_from_pt2) then converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2 else converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson endif endif do k = 1, N_st if(residual_norm(k) > 1.d8) then print *, 'Davidson failed' stop -1 endif enddo if(converged) then exit endif logical, external :: qp_stop if(qp_stop()) then converged = .True. exit endif enddo ! Re-contract U and update W ! -------------------------------- call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & , W, size(W, 1), y, size(y, 1) & , 0.d0, u_in, size(u_in, 1)) do k = 1, N_st_diag do i = 1, sze W(i,k) = u_in(i,k) enddo enddo call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 & , U, size(U, 1), y, size(y, 1), 0.d0 & , u_in, size(u_in, 1)) do k = 1, N_st_diag do i = 1, sze U(i,k) = u_in(i,k) enddo enddo enddo call nullify_small_elements(sze, N_st_diag, U, size(U, 1), threshold_davidson_pt2) do k = 1, N_st_diag do i = 1, sze u_in(i,k) = U(i,k) enddo enddo do k = 1, N_st_diag energies(k) = lambda(k) enddo write_buffer = '======' do i = 1, N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') trim(write_buffer) write(6,'(A)') '' call write_time(6) if(disk_based) then ! Remove temp files integer, external :: getUnitAndOpen call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w ) fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r') close(fd_w,status='delete') else deallocate(W) endif deallocate ( & residual_norm, & U, overlap, & h, y, s_tmp, & lambda, & u_tmp & ) FREE nthreads_davidson end subroutine davidson_diag_nonsym_hjj ! ---