subroutine orb_range_2_rdm_state_av_openmp(big_array,dim1,norb,list_orb,state_weights,ispin,u_0,N_st,sze) use bitmasks implicit none BEGIN_DOC ! if ispin == 1 :: alpha/alpha 2rdm ! == 2 :: beta /beta 2rdm ! == 3 :: alpha/beta 2rdm ! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba)) ! ! Assumes that the determinants are in psi_det ! ! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC integer, intent(in) :: N_st,sze integer, intent(in) :: dim1,norb,list_orb(norb),ispin double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) double precision, intent(in) :: u_0(sze,N_st),state_weights(N_st) integer :: k double precision, allocatable :: u_t(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t allocate(u_t(N_st,N_det)) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) enddo call dtranspose( & u_0, & size(u_0, 1), & u_t, & size(u_t, 1), & N_det, N_st) call orb_range_2_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1) deallocate(u_t) do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) enddo end subroutine orb_range_2_rdm_state_av_openmp_work(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks implicit none BEGIN_DOC ! Computes two-rdm ! ! Default should be 1,N_det,0,1 END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: dim1,norb,list_orb(norb),ispin double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st) integer :: k PROVIDE N_int select case (N_int) case (1) call orb_range_2_rdm_state_av_openmp_work_1(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (2) call orb_range_2_rdm_state_av_openmp_work_2(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (3) call orb_range_2_rdm_state_av_openmp_work_3(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case (4) call orb_range_2_rdm_state_av_openmp_work_4(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) case default call orb_range_2_rdm_state_av_openmp_work_N_int(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) end select end BEGIN_TEMPLATE subroutine orb_range_2_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,list_orb,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks use omp_lib implicit none BEGIN_DOC ! Computes the two rdm for the N_st vectors |u_t> ! if ispin == 1 :: alpha/alpha 2rdm ! == 2 :: beta /beta 2rdm ! == 3 :: alpha/beta 2rdm ! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba)) ! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb ! In any cases, the state average weights will be used with an array state_weights ! Default should be 1,N_det,0,1 for istart,iend,ishift,istep END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st) integer, intent(in) :: dim1,norb,list_orb(norb),ispin double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) integer(omp_lock_kind) :: lock_2rdm integer :: i,j,k,l integer :: k_a, k_b, l_a, l_b integer :: krow, kcol integer :: lrow, lcol integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det3($N_int,2) integer(bit_kind), allocatable :: buffer(:,:) integer :: n_doubles integer, allocatable :: doubles(:) integer, allocatable :: singles_a(:) integer, allocatable :: singles_b(:) integer, allocatable :: idx(:), idx0(:) integer :: maxab, n_singles_a, n_singles_b, kcol_prev double precision :: c_average logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace integer(bit_kind) :: orb_bitmask($N_int) integer :: list_orb_reverse(mo_num) integer, allocatable :: keys(:,:) double precision, allocatable :: values(:) integer :: nkeys,sze_buff alpha_alpha = .False. beta_beta = .False. alpha_beta = .False. spin_trace = .False. if( ispin == 1)then alpha_alpha = .True. else if(ispin == 2)then beta_beta = .True. else if(ispin == 3)then alpha_beta = .True. else if(ispin == 4)then spin_trace = .True. else print*,'Wrong parameter for ispin in general_2_rdm_state_av_openmp_work' print*,'ispin = ',ispin stop endif PROVIDE N_int call list_to_bitstring( orb_bitmask, list_orb, norb, N_int) sze_buff = 6 * norb + elec_alpha_num * elec_alpha_num * 60 list_orb_reverse = -1000 do i = 1, norb list_orb_reverse(list_orb(i)) = i enddo maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 allocate(idx0(maxab)) do i=1,maxab idx0(i) = i enddo call omp_init_lock(lock_2rdm) ! Prepare the array of all alpha single excitations ! ------------------------------------------------- PROVIDE N_int nthreads_davidson elec_alpha_num !$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) & !$OMP SHARED(psi_bilinear_matrix_rows, N_det,lock_2rdm,& !$OMP psi_bilinear_matrix_columns, & !$OMP psi_det_alpha_unique, psi_det_beta_unique,& !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,& !$OMP psi_bilinear_matrix_transp_rows, & !$OMP psi_bilinear_matrix_transp_columns, & !$OMP psi_bilinear_matrix_transp_order, N_st, & !$OMP psi_bilinear_matrix_order_transp_reverse, & !$OMP psi_bilinear_matrix_columns_loc, & !$OMP psi_bilinear_matrix_transp_rows_loc,elec_alpha_num, & !$OMP istart, iend, istep, irp_here,list_orb_reverse, n_states, state_weights, dim1, & !$OMP ishift, idx0, u_t, maxab, alpha_alpha,beta_beta,alpha_beta,spin_trace,ispin,big_array,sze_buff,orb_bitmask) & !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,c_1, c_2, & !$OMP lcol, lrow, l_a, l_b, & !$OMP buffer, doubles, n_doubles, & !$OMP tmp_det2, idx, l, kcol_prev, & !$OMP singles_a, n_singles_a, singles_b, & !$OMP n_singles_b, nkeys, keys, values, c_average) ! Alpha/Beta double excitations ! ============================= nkeys = 0 allocate( keys(4,sze_buff), values(sze_buff)) allocate( buffer($N_int,maxab), & singles_a(maxab), & singles_b(maxab), & doubles(maxab), & idx(maxab)) kcol_prev=-1 ASSERT (iend <= N_det) ASSERT (istart > 0) ASSERT (istep > 0) !$OMP DO SCHEDULE(dynamic,64) do k_a=istart+ishift,iend,istep krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) if (kcol /= kcol_prev) then call get_all_spin_singles_$N_int( & psi_det_beta_unique, idx0, & tmp_det(1,2), N_det_beta_unique, & singles_b, n_singles_b) endif kcol_prev = kcol ! Loop over singly excited beta columns ! ------------------------------------- do i=1,n_singles_b lcol = singles_b(i) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) l_a = psi_bilinear_matrix_columns_loc(lcol) ASSERT (l_a <= N_det) do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ASSERT (l_a <= N_det) idx(j) = l_a l_a = l_a+1 enddo j = j-1 call get_all_spin_singles_$N_int( & buffer, idx, tmp_det(1,1), j, & singles_a, n_singles_a ) ! Loop over alpha singles ! ----------------------- if(alpha_beta.or.spin_trace)then do k = 1,n_singles_a l_a = singles_a(k) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) c_average = 0.d0 do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_average += c_1(l) * c_2(l) * state_weights(l) enddo if(alpha_beta)then ! only ONE contribution if (nkeys+1 .ge. size(values)) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif else if (spin_trace)then ! TWO contributions if (nkeys+2 .ge. size(values)) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif endif call orb_range_off_diag_double_to_2_rdm_ab_dm_buffer(tmp_det,tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) enddo endif call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 enddo enddo !$OMP END DO !$OMP DO SCHEDULE(dynamic,64) do k_a=istart+ishift,iend,istep ! Single and double alpha exitations ! =================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) ! Initial determinant is at k_b in beta-major representation ! ---------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) spindet(1:$N_int) = tmp_det(1:$N_int,1) ! Loop inside the beta column to gather all the connected alphas lcol = psi_bilinear_matrix_columns(k_a) l_a = psi_bilinear_matrix_columns_loc(lcol) do i=1,N_det_alpha_unique if (l_a > N_det) exit lcol = psi_bilinear_matrix_columns(l_a) if (lcol /= kcol) exit lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow) idx(i) = l_a l_a = l_a+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_a, doubles, n_singles_a, n_doubles ) ! Compute Hij for all alpha singles ! ---------------------------------- tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) do i=1,n_singles_a l_a = singles_a(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) c_average = 0.d0 do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_average += c_1(l) * c_2(l) * state_weights(l) enddo if(alpha_beta.or.spin_trace.or.alpha_alpha)then ! increment the alpha/beta part for single excitations if (nkeys+ 2 * elec_alpha_num .ge. sze_buff) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif call orb_range_off_diag_single_to_2_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) ! increment the alpha/alpha part for single excitations if (nkeys+4 * elec_alpha_num .ge. sze_buff ) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif call orb_range_off_diag_single_to_2_rdm_aa_dm_buffer(tmp_det,tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) endif enddo call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 ! Compute Hij for all alpha doubles ! ---------------------------------- if(alpha_alpha.or.spin_trace)then do i=1,n_doubles l_a = doubles(i) ASSERT (l_a <= N_det) lrow = psi_bilinear_matrix_rows(l_a) ASSERT (lrow <= N_det_alpha_unique) c_average = 0.d0 do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_average += c_1(l) * c_2(l) * state_weights(l) enddo if (nkeys+4 .ge. sze_buff) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif call orb_range_off_diag_double_to_2_rdm_aa_dm_buffer(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) enddo endif call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 ! Single and double beta excitations ! ================================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) kcol = psi_bilinear_matrix_columns(k_a) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) spindet(1:$N_int) = tmp_det(1:$N_int,2) ! Initial determinant is at k_b in beta-major representation ! ----------------------------------------------------------------------- k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ASSERT (k_b <= N_det) ! Loop inside the alpha row to gather all the connected betas lrow = psi_bilinear_matrix_transp_rows(k_b) l_b = psi_bilinear_matrix_transp_rows_loc(lrow) do i=1,N_det_beta_unique if (l_b > N_det) exit lrow = psi_bilinear_matrix_transp_rows(l_b) if (lrow /= krow) exit lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) idx(i) = l_b l_b = l_b+1 enddo i = i-1 call get_all_spin_singles_and_doubles_$N_int( & buffer, idx, spindet, i, & singles_b, doubles, n_singles_b, n_doubles ) ! Compute Hij for all beta singles ! ---------------------------------- tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) do i=1,n_singles_b l_b = singles_b(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) l_a = psi_bilinear_matrix_transp_order(l_b) c_average = 0.d0 do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_average += c_1(l) * c_2(l) * state_weights(l) enddo if(alpha_beta.or.spin_trace.or.beta_beta)then ! increment the alpha/beta part for single excitations if (nkeys+2 * elec_alpha_num .ge. sze_buff ) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif call orb_range_off_diag_single_to_2_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) ! increment the beta /beta part for single excitations if (nkeys+4 * elec_alpha_num .ge. sze_buff) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif call orb_range_off_diag_single_to_2_rdm_bb_dm_buffer(tmp_det, tmp_det2,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) endif enddo call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 ! Compute Hij for all beta doubles ! ---------------------------------- if(beta_beta.or.spin_trace)then do i=1,n_doubles l_b = doubles(i) ASSERT (l_b <= N_det) lcol = psi_bilinear_matrix_transp_columns(l_b) ASSERT (lcol <= N_det_beta_unique) l_a = psi_bilinear_matrix_transp_order(l_b) c_average = 0.d0 do l= 1, N_states c_1(l) = u_t(l,l_a) c_2(l) = u_t(l,k_a) c_average += c_1(l) * c_2(l) * state_weights(l) enddo if (nkeys+4 .ge. sze_buff) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) nkeys = 0 endif call orb_range_off_diag_double_to_2_rdm_bb_dm_buffer(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) ! print*,'to do orb_range_off_diag_double_to_2_rdm_bb_dm_buffer' ASSERT (l_a <= N_det) enddo endif ! Diagonal contribution ! ===================== ! Initial determinant is at k_a in alpha-major representation ! ----------------------------------------------------------------------- krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) double precision, external :: diag_wee_mat_elem, diag_S_mat_elem double precision :: c_1(N_states),c_2(N_states) c_average = 0.d0 do l = 1, N_states c_1(l) = u_t(l,k_a) c_average += c_1(l) * c_1(l) * state_weights(l) enddo if (nkeys > 0) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) endif nkeys = 0 call orb_range_diag_to_all_2_rdm_dm_buffer(tmp_det,c_average,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values) if (nkeys > 0) then call update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) endif nkeys = 0 end do !$OMP END DO deallocate(buffer, singles_a, singles_b, doubles, idx, keys, values) !$OMP END PARALLEL end SUBST [ N_int ] 1;; 2;; 3;; 4;; N_int;; END_TEMPLATE subroutine update_keys_values(keys,values,nkeys,dim1,big_array,lock_2rdm) use omp_lib implicit none integer, intent(in) :: nkeys,dim1 integer, intent(in) :: keys(4,nkeys) double precision, intent(in) :: values(nkeys) double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) integer(omp_lock_kind),intent(inout):: lock_2rdm integer :: i,h1,h2,p1,p2 call omp_set_lock(lock_2rdm) do i = 1, nkeys h1 = keys(1,i) h2 = keys(2,i) p1 = keys(3,i) p2 = keys(4,i) big_array(h1,h2,p1,p2) += values(i) enddo call omp_unset_lock(lock_2rdm) end