double precision function diag_S_mat_elem(key_i,Nint) implicit none use bitmasks include 'utils/constants.include.F' integer :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2) BEGIN_DOC ! Returns END_DOC integer :: nup, ntot, i integer(bit_kind) :: xorvec(N_int_max), upvec(N_int_max) do i=1,Nint xorvec(i) = xor(key_i(i,1),key_i(i,2)) enddo do i=1,Nint upvec(i) = iand(xorvec(i),key_i(i,1)) enddo ! nup is number of alpha unpaired ! ntot is total number of unpaired nup = 0 ntot = 0 do i=1,Nint if (xorvec(i) /= 0_bit_kind) then ntot += popcnt(xorvec(i)) if (upvec(i) /= 0_bit_kind) then nup += popcnt(upvec(i)) endif endif enddo double precision :: sz sz = nup - 0.5d0*ntot ! = + Sz(Sz-1) diag_S_mat_elem = nup + sz*(sz-1) end subroutine get_s2(key_i,key_j,Nint,s2) implicit none use bitmasks BEGIN_DOC ! Returns $\langle S^2 \rangle - S_z^2 S_z$ END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2) integer(bit_kind), intent(in) :: key_j(Nint,2) double precision, intent(out) :: s2 integer :: exc(0:2,2,2) integer :: degree double precision :: phase_spsm integer :: nup, i s2 = 0.d0 !$FORCEINLINE call get_excitation_degree(key_i,key_j,degree,Nint) select case (degree) case(2) call get_double_excitation(key_j,key_i,exc,phase_spsm,Nint) if (exc(0,1,1) == 1) then ! Mono alpha + mono-beta if ( (exc(1,1,1) == exc(1,2,2)).and.(exc(1,1,2) == exc(1,2,1)) ) then s2 = -phase_spsm endif endif case(0) double precision, external :: diag_S_mat_elem !DIR$ FORCEINLINE s2 = diag_S_mat_elem(key_i,Nint) end select end BEGIN_PROVIDER [ double precision, S_z ] &BEGIN_PROVIDER [ double precision, S_z2_Sz ] implicit none BEGIN_DOC ! z component of the Spin END_DOC S_z = 0.5d0*dble(elec_alpha_num-elec_beta_num) S_z2_Sz = S_z*(S_z-1.d0) END_PROVIDER BEGIN_PROVIDER [ double precision, expected_s2] implicit none BEGIN_DOC ! Expected value of |S^2| : S*(S+1) END_DOC logical :: has_expected_s2 call ezfio_has_determinants_expected_s2(has_expected_s2) if (has_expected_s2) then call ezfio_get_determinants_expected_s2(expected_s2) else double precision :: S S = (elec_alpha_num-elec_beta_num)*0.5d0 expected_s2 = S * (S+1.d0) endif END_PROVIDER BEGIN_PROVIDER [ double precision, s2_values, (N_states) ] &BEGIN_PROVIDER [ double precision, s_values, (N_states) ] implicit none BEGIN_DOC ! array of the averaged values of the S^2 operator on the various states END_DOC integer :: i call u_0_S2_u_0(s2_values,psi_coef,n_det,psi_det,N_int,N_states,psi_det_size) do i = 1, N_states s_values(i) = 0.5d0 *(-1.d0 + dsqrt(1.d0 + 4 * s2_values(i))) enddo END_PROVIDER subroutine u_0_S2_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze_8) use bitmasks implicit none BEGIN_DOC ! Computes e_0 = / ! ! n : number of determinants ! END_DOC integer, intent(in) :: n,Nint, N_st, sze_8 double precision, intent(out) :: e_0(N_st) double precision, intent(in) :: u_0(sze_8,N_st) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) double precision, allocatable :: v_0(:,:) double precision :: u_dot_u,u_dot_v integer :: i,j allocate (v_0(sze_8,N_st)) call S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8) do i=1,N_st e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n)/u_dot_u(u_0(1,i),n) enddo end subroutine S2_u_0(v_0,u_0,n,keys_tmp,Nint) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = S^2|u_0> ! ! n : number of determinants ! END_DOC integer, intent(in) :: n,Nint double precision, intent(out) :: v_0(n) double precision, intent(in) :: u_0(n) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) call S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,1,n) end subroutine S2_u_0_nstates(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = S^2|u_0> ! ! n : number of determinants ! END_DOC integer, intent(in) :: N_st,n,Nint, sze_8 double precision, intent(out) :: v_0(sze_8,N_st) double precision, intent(in) :: u_0(sze_8,N_st) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) double precision :: s2_tmp double precision, allocatable :: vt(:,:) integer :: i,j,k,l, jj,ii integer :: i0, j0 integer, allocatable :: shortcut(:,:), sort_idx(:,:) integer(bit_kind), allocatable :: sorted(:,:,:), version(:,:,:) integer(bit_kind) :: sorted_i(Nint) integer :: sh, sh2, ni, exa, ext, org_i, org_j, endi, istate ASSERT (Nint > 0) ASSERT (Nint == N_int) ASSERT (n>0) PROVIDE ref_bitmask_energy allocate (shortcut(0:n+1,2), sort_idx(n,2), sorted(Nint,n,2), version(Nint,n,2)) v_0 = 0.d0 call sort_dets_ab_v(keys_tmp, sorted(1,1,1), sort_idx(1,1), shortcut(0,1), version(1,1,1), n, Nint) call sort_dets_ba_v(keys_tmp, sorted(1,1,2), sort_idx(1,2), shortcut(0,2), version(1,1,2), n, Nint) !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(i,s2_tmp,j,k,jj,vt,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,sorted_i,istate)& !$OMP SHARED(n,u_0,keys_tmp,Nint,v_0,sorted,shortcut,sort_idx,version,N_st,sze_8) allocate(vt(sze_8,N_st)) vt = 0.d0 do sh=1,shortcut(0,1) !$OMP DO SCHEDULE(static,1) do sh2=sh,shortcut(0,1) exa = 0 do ni=1,Nint exa = exa + popcnt(xor(version(ni,sh,1), version(ni,sh2,1))) end do if(exa > 2) then cycle end if do i=shortcut(sh,1),shortcut(sh+1,1)-1 org_i = sort_idx(i,1) if(sh==sh2) then endi = i-1 else endi = shortcut(sh2+1,1)-1 end if do ni=1,Nint sorted_i(ni) = sorted(ni,i,1) enddo do j=shortcut(sh2,1),endi org_j = sort_idx(j,1) ext = exa do ni=1,Nint ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j,1))) end do if(ext <= 4) then call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),Nint,s2_tmp) do istate=1,N_st vt (org_i,istate) = vt (org_i,istate) + s2_tmp*u_0(org_j,istate) vt (org_j,istate) = vt (org_j,istate) + s2_tmp*u_0(org_i,istate) enddo endif enddo enddo enddo !$OMP END DO NOWAIT enddo do sh=1,shortcut(0,2) !$OMP DO do i=shortcut(sh,2),shortcut(sh+1,2)-1 org_i = sort_idx(i,2) do j=shortcut(sh,2),i-1 org_j = sort_idx(j,2) ext = 0 do ni=1,Nint ext = ext + popcnt(xor(sorted(ni,i,2), sorted(ni,j,2))) end do if(ext == 4) then call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),Nint,s2_tmp) do istate=1,N_st vt (org_i,istate) = vt (org_i,istate) + s2_tmp*u_0(org_j,istate) vt (org_j,istate) = vt (org_j,istate) + s2_tmp*u_0(org_i,istate) enddo end if end do end do !$OMP END DO NOWAIT enddo !$OMP BARRIER do istate=1,N_st do i=n,1,-1 !$OMP ATOMIC v_0(i,istate) = v_0(i,istate) + vt(i,istate) enddo enddo deallocate(vt) !$OMP END PARALLEL do i=1,n call get_s2(keys_tmp(1,1,i),keys_tmp(1,1,i),Nint,s2_tmp) do istate=1,N_st v_0(i,istate) += s2_tmp * u_0(i,istate) enddo enddo deallocate (shortcut, sort_idx, sorted, version) end subroutine get_uJ_s2_uI(psi_keys_tmp,psi_coefs_tmp,n,nmax_coefs,nmax_keys,s2,nstates) implicit none use bitmasks integer, intent(in) :: n,nmax_coefs,nmax_keys,nstates integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax_keys) double precision, intent(in) :: psi_coefs_tmp(nmax_coefs,nstates) double precision, intent(out) :: s2(nstates,nstates) double precision :: s2_tmp,accu integer :: i,j,l,jj,ll,kk integer, allocatable :: idx(:) BEGIN_DOC ! returns the matrix elements of S^2 "s2(i,j)" between the "nstates" states ! psi_coefs_tmp(:,i) and psi_coefs_tmp(:,j) END_DOC s2 = 0.d0 do ll = 1, nstates do jj = 1, nstates accu = 0.d0 !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE (i,j,kk,idx,s2_tmp) & !$OMP SHARED (ll,jj,psi_keys_tmp,psi_coefs_tmp,N_int,n,nstates)& !$OMP REDUCTION(+:accu) allocate(idx(0:n)) !$OMP DO SCHEDULE(guided) do i = n,1,-1 ! Better OMP scheduling call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,i),N_int,s2_tmp) accu += psi_coefs_tmp(i,ll) * s2_tmp * psi_coefs_tmp(i,jj) call filter_connected(psi_keys_tmp,psi_keys_tmp(1,1,i),N_int,i-1,idx) do kk=1,idx(0) j = idx(kk) call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,j),N_int,s2_tmp) accu += psi_coefs_tmp(i,ll) * s2_tmp * psi_coefs_tmp(j,jj) + psi_coefs_tmp(i,jj) * s2_tmp * psi_coefs_tmp(j,ll) enddo enddo !$OMP END DO deallocate(idx) !$OMP END PARALLEL s2(ll,jj) += accu enddo enddo do i = 1, nstates do j =i+1,nstates accu = 0.5d0 * (s2(i,j) + s2(j,i)) s2(i,j) = accu s2(j,i) = accu enddo enddo end subroutine i_S2_psi_minilist(key,keys,idx_key,N_minilist,coef,Nint,Ndet,Ndet_max,Nstate,i_S2_psi_array) use bitmasks implicit none integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate,idx_key(Ndet), N_minilist integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) integer(bit_kind), intent(in) :: key(Nint,2) double precision, intent(in) :: coef(Ndet_max,Nstate) double precision, intent(out) :: i_S2_psi_array(Nstate) integer :: i, ii,j, i_in_key, i_in_coef double precision :: phase integer :: exc(0:2,2,2) double precision :: s2ij integer :: idx(0:Ndet) BEGIN_DOC ! Computes $\langle i|S^2|\Psi \rangle = \sum_J c_J \langle i|S^2|J \rangle$. ! ! Uses filter_connected_i_H_psi0 to get all the $|J\rangle$ to which $|i\rangle$ ! is connected. The $|J\rangle$ are searched in short pre-computed lists. END_DOC ASSERT (Nint > 0) ASSERT (N_int == Nint) ASSERT (Nstate > 0) ASSERT (Ndet > 0) ASSERT (Ndet_max >= Ndet) i_S2_psi_array = 0.d0 call filter_connected_i_H_psi0(keys,key,Nint,N_minilist,idx) if (Nstate == 1) then do ii=1,idx(0) i_in_key = idx(ii) i_in_coef = idx_key(idx(ii)) !DIR$ FORCEINLINE call get_s2(keys(1,1,i_in_key),key,Nint,s2ij) ! TODO : Cache misses i_S2_psi_array(1) = i_S2_psi_array(1) + coef(i_in_coef,1)*s2ij enddo else do ii=1,idx(0) i_in_key = idx(ii) i_in_coef = idx_key(idx(ii)) !DIR$ FORCEINLINE call get_s2(keys(1,1,i_in_key),key,Nint,s2ij) do j = 1, Nstate i_S2_psi_array(j) = i_S2_psi_array(j) + coef(i_in_coef,j)*s2ij enddo enddo endif end