subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies,sze,N_st,N_st_diag,converged,hcalc) use mmap_module BEGIN_DOC ! Generic Davidson diagonalization with TWO DRESSING VECTORS ! ! Dress_jj : DIAGONAL DRESSING of the Hamiltonian ! ! Dressing_vec : COLUMN / LINE DRESSING VECTOR ! ! idx_dress : position of the basis function used to use the Dressing_vec (usually the largest coeff) ! ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson ! ! u_in : guess coefficients on the various states. Overwritten on exit ! ! sze : leftmost dimension of u_in ! ! sze : Number of determinants ! ! N_st : Number of eigenstates ! ! N_st_diag : Number of states in which H is diagonalized. Assumed > sze ! ! Initial guess vectors are not necessarily orthonormal ! ! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output) END_DOC implicit none integer, intent(in) :: sze, N_st, N_st_diag, idx_dress double precision, intent(in) :: H_jj(sze),Dress_jj(sze),Dressing_vec(sze,N_st) double precision, intent(inout) :: u_in(sze,N_st_diag) double precision, intent(out) :: energies(N_st_diag) logical, intent(out) :: converged external :: hcalc double precision, allocatable :: H_jj_tmp(:) ASSERT (N_st > 0) ASSERT (sze > 0) allocate(H_jj_tmp(sze)) do i=1,sze H_jj_tmp(i) = H_jj(i) + Dress_jj(i) enddo do k=1,N_st do i=1,sze H_jj_tmp(i) += u_in(i,k) * Dressing_vec(i,k) enddo enddo integer :: iter integer :: i,j,k,l,m double precision, external :: u_dot_v, u_dot_u integer :: k_pairs, kl integer :: iter2, itertot double precision, allocatable :: y(:,:), h(:,:), lambda(:) double precision, allocatable :: s_tmp(:,:) double precision, allocatable :: residual_norm(:),inv_c_idx_dress_vec(:) character*(16384) :: write_buffer double precision :: to_print(2,N_st),inv_c_idx_dress double precision :: cpu, wall integer :: shift, shift2, itermax, istate double precision :: r1, r2, alpha logical :: state_ok(N_st_diag*davidson_sze_max) integer :: nproc_target integer :: order(N_st_diag) double precision :: cmax double precision, allocatable :: U(:,:), overlap(:,:) double precision, pointer :: W(:,:) logical :: disk_based double precision :: energy_shift(N_st_diag*davidson_sze_max) allocate(inv_c_idx_dress_vec(N_st)) inv_c_idx_dress = 1.d0/u_in(idx_dress,1) do i = 1, N_st inv_c_idx_dress_vec(i) = 1.d0/u_in(idx_dress,i) enddo include 'constants.include.F' integer :: N_st_diag_in N_st_diag_in = N_st_diag !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda if (N_st_diag_in*3 > sze) then print *, 'error in Davidson :' print *, 'Increase n_det_max_full to ', N_st_diag_in*3 stop -1 endif itermax = max(2,min(davidson_sze_max, sze/N_st_diag_in))+1 itertot = 0 if (state_following) then allocate(overlap(N_st_diag_in*itermax, N_st_diag_in*itermax)) else allocate(overlap(1,1)) ! avoid 'if' for deallocate endif overlap = 0.d0 call write_time(6) write(6,'(A)') '' write(6,'(A)') 'Davidson Diagonalization' write(6,'(A)') '------------------------' write(6,'(A)') '' ! Find max number of cores to fit in memory ! ----------------------------------------- nproc_target = nproc double precision :: rss integer :: maxab maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 m=1 disk_based = .False. call resident_memory(rss) do r1 = 8.d0 * &! bytes ( dble(sze)*(N_st_diag_in*itermax) &! U + 1.0d0*dble(sze*m)*(N_st_diag_in*itermax) &! W + 3.0d0*(N_st_diag_in*itermax)**2 &! h,y,s_tmp + 1.d0*(N_st_diag_in*itermax) &! lambda + 1.d0*(N_st_diag_in) &! residual_norm ! In H_u_0_nstates_zmq + 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on collector + 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on slave + 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_* + nproc_target * &! In OMP section ( 1.d0*(N_int*maxab) &! buffer + 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx ) / 1024.d0**3 if (nproc_target == 0) then call check_mem(r1,irp_here) nproc_target = 1 exit endif if (r1+rss < qp_max_mem) then exit endif if (itermax > 4) then itermax = itermax - 1 else if (m==1.and.disk_based_davidson) then m=0 disk_based = .True. itermax = 6 else nproc_target = nproc_target - 1 endif enddo nthreads_davidson = nproc_target TOUCH nthreads_davidson call write_int(6,N_st,'Number of states') call write_int(6,N_st_diag_in,'Number of states in diagonalization') call write_int(6,sze,'Number of basis functions ') call write_int(6,nproc_target,'Number of threads for diagonalization') call write_double(6, r1, 'Memory(Gb)') if (disk_based) then print *, 'Using swap space to reduce RAM' endif !--------------- write(6,'(A)') '' write_buffer = '=====' do i=1,N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') write_buffer(1:6+41*N_st) write_buffer = 'Iter' do i=1,N_st write_buffer = trim(write_buffer)//' Energy Residual ' enddo write(6,'(A)') write_buffer(1:6+41*N_st) write_buffer = '=====' do i=1,N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') write_buffer(1:6+41*N_st) allocate(W(sze,N_st_diag_in*itermax)) allocate( & ! Large U(sze,N_st_diag_in*itermax), & ! Small h(N_st_diag_in*itermax,N_st_diag_in*itermax), & y(N_st_diag_in*itermax,N_st_diag_in*itermax), & s_tmp(N_st_diag_in*itermax,N_st_diag_in*itermax), & residual_norm(N_st_diag_in), & lambda(N_st_diag_in*itermax)) h = 0.d0 U = 0.d0 y = 0.d0 s_tmp = 0.d0 ASSERT (N_st > 0) ASSERT (N_st_diag_in >= N_st) ASSERT (sze > 0) ! Davidson iterations ! =================== converged = .False. do k=N_st+1,N_st_diag_in do i=1,sze call random_number(r1) call random_number(r2) r1 = dsqrt(-2.d0*dlog(r1)) r2 = dtwo_pi*r2 u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st) enddo u_in(k,k) = u_in(k,k) + 10.d0 enddo do k=1,N_st_diag_in call normalize(u_in(:,k),sze) enddo do k=1,N_st_diag_in do i=1,sze U(i,k) = u_in(i,k) enddo enddo do while (.not.converged) itertot = itertot+1 if (itertot == 2) then exit endif do iter=1,itermax-1 shift = N_st_diag_in*(iter-1) shift2 = N_st_diag_in*iter if ((iter > 1).or.(itertot == 1)) then ! Compute |W_k> = \sum_i |i> ! ----------------------------------- call hcalc(W(:,shift+1),U(:,shift+1),N_st_diag_in,sze) ! Compute then the DIAGONAL PART OF THE DRESSING ! += Dress_jj(i) * call dressing_diag_uv(W(:,shift+1),U(:,shift+1),Dress_jj,N_st_diag_in,sze) else ! Already computed in update below continue endif if (N_st == 1) then l = idx_dress double precision :: f f = inv_c_idx_dress do istate=1,N_st_diag_in do i=1,sze W(i,shift+istate) += Dressing_vec(i,1) *f * U(l,shift+istate) W(l,shift+istate) += Dressing_vec(i,1) *f * U(i,shift+istate) enddo enddo else print*,'dav_double_dressed routine not yet implemented for N_st > 1' ! ! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, & ! psi_coef, size(psi_coef,1), & ! U(:,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1)) ! ! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, & ! Dressing_vec, size(Dressing_vec,1), s_tmp, size(s_tmp,1), & ! 1.d0, W(:,shift+1), size(W,1)) ! ! ! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, & ! Dressing_vec, size(Dressing_vec,1), & ! U(:,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1)) ! ! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, & ! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), & ! 1.d0, W(:,shift+1), size(W,1)) ! endif ! Compute h_kl = = ! ------------------------------------------- call dgemm('T','N', shift2, shift2, sze, & 1.d0, U, size(U,1), W, size(W,1), & 0.d0, h, size(h,1)) call dgemm('T','N', shift2, shift2, sze, & 1.d0, U, size(U,1), U, size(U,1), & 0.d0, s_tmp, size(s_tmp,1)) ! Diagonalize h ! --------------- integer :: lwork, info double precision, allocatable :: work(:) y = h lwork = -1 allocate(work(1)) call dsygv(1,'V','U',shift2,y,size(y,1), & s_tmp,size(s_tmp,1), lambda, work,lwork,info) lwork = int(work(1)) deallocate(work) allocate(work(lwork)) call dsygv(1,'V','U',shift2,y,size(y,1), & s_tmp,size(s_tmp,1), lambda, work,lwork,info) deallocate(work) if (info /= 0) then stop 'DSYGV Diagonalization failed' endif ! Compute Energy for each eigenvector ! ----------------------------------- call dgemm('N','N',shift2,shift2,shift2, & 1.d0, h, size(h,1), y, size(y,1), & 0.d0, s_tmp, size(s_tmp,1)) call dgemm('T','N',shift2,shift2,shift2, & 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), & 0.d0, h, size(h,1)) do k=1,shift2 lambda(k) = h(k,k) enddo if (state_following) then overlap = -1.d0 do k=1,shift2 do i=1,shift2 overlap(k,i) = dabs(y(k,i)) enddo enddo do k=1,N_st cmax = -1.d0 do i=1,N_st if (overlap(i,k) > cmax) then cmax = overlap(i,k) order(k) = i endif enddo do i=1,N_st_diag_in overlap(order(k),i) = -1.d0 enddo enddo overlap = y do k=1,N_st l = order(k) if (k /= l) then y(1:shift2,k) = overlap(1:shift2,l) endif enddo do k=1,N_st overlap(k,1) = lambda(k) enddo endif ! Express eigenvectors of h in the determinant basis ! -------------------------------------------------- call dgemm('N','N', sze, N_st_diag_in, shift2, & 1.d0, U, size(U,1), y, size(y,1), 0.d0, U(:,shift2+1), size(U,1)) call dgemm('N','N', sze, N_st_diag_in, shift2, & 1.d0, W, size(W,1), y, size(y,1), 0.d0, W(:,shift2+1), size(W,1)) ! Compute residual vector and davidson step ! ----------------------------------------- !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k) do k=1,N_st_diag_in do i=1,sze U(i,shift2+k) = & (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) & /max(H_jj_tmp(i) - lambda (k),1.d-2) enddo if (k <= N_st) then residual_norm(k) = u_dot_u(U(:,shift2+k),sze) to_print(1,k) = lambda(k) to_print(2,k) = residual_norm(k) endif enddo !$OMP END PARALLEL DO if ((itertot>1).and.(iter == 1)) then !don't print continue else write(*,'(1X,I3,1X,100(1X,F16.10,1X,ES11.3))') iter-1, to_print(1:2,1:N_st) endif ! Check convergence if (iter > 1) then converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson endif do k=1,N_st if (residual_norm(k) > 1.d8) then print *, 'Davidson failed' stop -1 endif enddo if (converged) then exit endif logical, external :: qp_stop if (qp_stop()) then converged = .True. exit endif enddo ! Re-contract U and update W ! -------------------------------- call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, & W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) do k=1,N_st_diag_in do i=1,sze W(i,k) = u_in(i,k) enddo enddo call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, & U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) do k=1,N_st_diag_in do i=1,sze U(i,k) = u_in(i,k) enddo enddo enddo call nullify_small_elements(sze,N_st_diag_in,U,size(U,1),threshold_davidson_pt2) do k=1,N_st_diag_in do i=1,sze u_in(i,k) = U(i,k) enddo enddo do k=1,N_st_diag_in energies(k) = lambda(k) enddo write_buffer = '======' do i=1,N_st write_buffer = trim(write_buffer)//' ================ ===========' enddo write(6,'(A)') trim(write_buffer) write(6,'(A)') '' call write_time(6) deallocate(W) deallocate ( & residual_norm, & U, overlap, & h, y, s_tmp, & lambda & ) FREE nthreads_davidson end subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze) implicit none BEGIN_DOC ! Routine that computes the diagonal part of the dressing ! ! v(i) += u(i) * dress_diag(i) ! ! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized ! ! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE END_DOC integer, intent(in) :: N_st,sze double precision, intent(in) :: u(sze,N_st),dress_diag(sze) double precision, intent(inout) :: v(sze,N_st) integer :: i,istate do istate = 1, N_st do i = 1, sze v(i,istate) += dress_diag(i) * u(i,istate) enddo enddo end