9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-06 16:15:57 +02:00

Compare commits

..

7 Commits

Author SHA1 Message Date
4445ac6c60 Merge branch 'casscf' of github.com:QuantumPackage/qp2 into casscf 2019-06-28 01:16:12 +02:00
d742bdd655 Cleaning 2019-06-28 00:06:51 +02:00
a4d2e39978 Minor fix 2019-06-28 00:04:12 +02:00
ae3a4929b6 Using fast 2RDM s 2019-06-27 23:59:21 +02:00
82bbf95fea Fixed small bugs 2019-06-27 23:46:30 +02:00
92e44f53ba Fixed small bugs 2019-06-27 23:06:35 +02:00
3e38912dcb indentation 2019-06-27 22:52:32 +02:00
13 changed files with 550 additions and 678 deletions

View File

@ -141,6 +141,10 @@ END_PROVIDER
n_act_orb_tmp = 0 n_act_orb_tmp = 0
n_virt_orb_tmp = 0 n_virt_orb_tmp = 0
n_del_orb_tmp = 0 n_del_orb_tmp = 0
core_bitmask = 0_bit_kind
inact_bitmask = 0_bit_kind
act_bitmask = 0_bit_kind
virt_bitmask = 0_bit_kind
do i = 1, mo_num do i = 1, mo_num
if(mo_class(i) == 'Core')then if(mo_class(i) == 'Core')then
n_core_orb_tmp += 1 n_core_orb_tmp += 1

View File

@ -1,6 +1,6 @@
! -*- F90 -*- ! -*- F90 -*-
BEGIN_PROVIDER [logical, bavard] BEGIN_PROVIDER [logical, bavard]
bavard=.true. ! bavard=.true.
! bavard=.false. bavard=.false.
END_PROVIDER END_PROVIDER

View File

@ -4,7 +4,8 @@ program casscf
! TODO : Put the documentation of the program here ! TODO : Put the documentation of the program here
END_DOC END_DOC
no_vvvv_integrals = .True. no_vvvv_integrals = .True.
SOFT_TOUCH no_vvvv_integrals pt2_max = 0.02
SOFT_TOUCH no_vvvv_integrals pt2_max
call run call run
end end
@ -19,8 +20,7 @@ subroutine run
mo_label = "MCSCF" mo_label = "MCSCF"
iteration = 1 iteration = 1
do while (.not.converged) do while (.not.converged)
call run_cipsi call run_stochastic_cipsi
energy_old = energy energy_old = energy
energy = eone+etwo+ecore energy = eone+etwo+ecore
@ -30,14 +30,19 @@ subroutine run
call write_double(6,energy_improvement, 'Predicted energy improvement') call write_double(6,energy_improvement, 'Predicted energy improvement')
converged = dabs(energy_improvement) < thresh_scf converged = dabs(energy_improvement) < thresh_scf
pt2_max = dabs(energy_improvement / pt2_relative_error)
mo_coef = NewOrbs mo_coef = NewOrbs
call save_mos call save_mos
call map_deinit(mo_integrals_map) call map_deinit(mo_integrals_map)
N_det = 1
iteration += 1 iteration += 1
FREE mo_integrals_map mo_two_e_integrals_in_map psi_det psi_coef N_det = N_det/2
SOFT_TOUCH mo_coef N_det psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
read_wf = .True.
FREE mo_integrals_map mo_two_e_integrals_in_map
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
enddo enddo
end end

View File

@ -29,7 +29,9 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
! !
END_DOC END_DOC
implicit none implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart integer :: t,u,v,x
integer :: tt,uu,vv,xx
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22 real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22 integer :: nu1,nu2,nu11,nu12,nu21,nu22
@ -43,125 +45,25 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
write(6,*) ' providing density matrix P0' write(6,*) ' providing density matrix P0'
endif endif
P0tuvx = 0.d0 P0tuvx= 0.d0
do istate=1,N_states
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu do x = 1, n_act_orb
do mu=1,n_det xx = list_act(x)
call det_extract(det_mu,mu,N_int) do v = 1, n_act_orb
do istate=1,n_states vv = list_act(v)
cI_mu(istate)=psi_coef(mu,istate) do u = 1, n_act_orb
end do uu = list_act(u)
do t=1,n_act_orb do t = 1, n_act_orb
ipart=list_act(t) tt = list_act(t)
do u=1,n_act_orb P0tuvx(t,u,v,x) = &
ihole=list_act(u) state_average_weight(istate) * &
! apply E_tu ( two_rdm_alpha_beta_mo (tt,uu,vv,xx,istate) + &
call det_copy(det_mu,det_mu_ex1,N_int) two_rdm_alpha_alpha_mo(tt,uu,vv,xx,istate) + &
call det_copy(det_mu,det_mu_ex2,N_int) two_rdm_beta_beta_mo (tt,uu,vv,xx,istate) )
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 & enddo
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2) enddo
! det_mu_ex1 is in the list enddo
if (nu1.ne.-1) then enddo
do istate=1,n_states enddo
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
! and we fill P0_tvvu
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do
end if
end do
end do
end do
! now we do the double excitation E_tu E_vx |0>
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do v=1,n_act_orb
ipart=list_act(v)
do x=1,n_act_orb
ihole=list_act(x)
! apply E_vx
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0>
if (ierr1.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex1,det_mu_ex11,N_int)
call det_copy(det_mu_ex1,det_mu_ex12,N_int)
call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11&
,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12)
if (nu11.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate)&
*phase11*phase1
end do
end if
if (nu12.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate)&
*phase12*phase1
end do
end if
end do
end do
end if
! we apply E_tu to the second resultant determinant
if (ierr2.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex2,det_mu_ex21,N_int)
call det_copy(det_mu_ex2,det_mu_ex22,N_int)
call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21&
,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22)
if (nu21.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate)&
*phase21*phase2
end do
end if
if (nu22.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate)&
*phase22*phase2
end do
end if
end do
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
do u=1,n_act_orb
do t=1,n_act_orb
P0tuvx(t,u,v,x)*=0.5D0/dble(N_states)
end do
end do
end do
end do
END_PROVIDER END_PROVIDER

View File

@ -25,7 +25,7 @@ BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
end do end do
if (bavard) then if (bavard) then
do i=2,nMonoEx+1 do i=2,nMonoEx
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i) write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
end do end do
end if end if
@ -77,14 +77,14 @@ END_PROVIDER
energy_improvement = SXeigenval(best_vector) energy_improvement = SXeigenval(best_vector)
c0=SXeigenvec(1,best_vector)
if (bavard) then if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with ' write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector) write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
write(6,*) ' weight of the 1st element ',c0 write(6,*) ' weight of the 1st element ',c0
endif endif
c0=SXeigenvec(1,best_vector)
do i=1,nMonoEx+1 do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector)/c0 SXvector(i)=SXeigenvec(i,best_vector)/c0
end do end do

View File

@ -1,30 +0,0 @@
program print_two_rdm
implicit none
integer :: i,j,k,l
read_wf = .True.
TOUCH read_wf
double precision, parameter :: thr = 1.d-15
double precision :: accu,twodm
accu = 0.d0
do i=1,mo_num
do j=1,mo_num
do k=1,mo_num
do l=1,mo_num
twodm = coussin_peter_two_rdm_mo(i,j,k,l,1)
if(dabs(twodm - P0tuvx(i,j,k,l)).gt.thr)then
print*,''
print*,'sum'
write(*,'(3X,4(I2,X),3(F16.13,X))'), i, j, k, l, twodm,P0tuvx(i,j,k,l),dabs(twodm - P0tuvx(i,j,k,l))
print*,''
endif
accu += dabs(twodm - P0tuvx(i,j,k,l))
enddo
enddo
enddo
enddo
print*,'accu = ',accu
print*,'<accu> ',accu / dble(mo_num**4)
end

View File

@ -13,6 +13,7 @@ subroutine run_cipsi
rss = memory_of_double(N_states)*4.d0 rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here) call check_mem(rss,irp_here)
N_iter = 1
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states)) allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
double precision :: hf_energy_ref double precision :: hf_energy_ref

View File

@ -135,7 +135,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
PROVIDE psi_occ_pattern_hii det_to_occ_pattern PROVIDE psi_occ_pattern_hii det_to_occ_pattern
endif endif
if (N_det < max(4,N_states)) then if (N_det <= max(4,N_states)) then
pt2=0.d0 pt2=0.d0
variance=0.d0 variance=0.d0
norm=0.d0 norm=0.d0
@ -719,6 +719,15 @@ END_PROVIDER
double precision :: rss double precision :: rss
double precision, external :: memory_of_double, memory_of_int double precision, external :: memory_of_double, memory_of_int
if (N_det_generators == 1) then
pt2_w = 1.d0
pt2_cw = 1.d0
pt2_W_T = 1.d0
pt2_u_0 = 1.d0
pt2_n_0 = 1
return
endif
rss = memory_of_double(2*N_det_generators+1) rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here) call check_mem(rss,irp_here)
@ -754,7 +763,7 @@ END_PROVIDER
end if end if
pt2_n_0(1) += 1 pt2_n_0(1) += 1
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
stop "teeth building failed" print *, "teeth building failed"
end if end if
end do end do
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

View File

@ -12,6 +12,7 @@ subroutine run_stochastic_cipsi
double precision, external :: memory_of_double double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated N_generators_bitmask PROVIDE H_apply_buffer_allocated N_generators_bitmask
N_iter = 1
threshold_generators = 1.d0 threshold_generators = 1.d0
SOFT_TOUCH threshold_generators SOFT_TOUCH threshold_generators

View File

@ -55,6 +55,7 @@ END_PROVIDER
nongen(inongen) = i nongen(inongen) = i
endif endif
enddo enddo
ASSERT (m == N_det_generators)
psi_det_sorted_gen(:,:,:N_det_generators) = psi_det_generators(:,:,:N_det_generators) psi_det_sorted_gen(:,:,:N_det_generators) = psi_det_generators(:,:,:N_det_generators)
psi_coef_sorted_gen(:N_det_generators, :) = psi_coef_generators(:N_det_generators, :) psi_coef_sorted_gen(:N_det_generators, :) = psi_coef_generators(:N_det_generators, :)

View File

@ -2,5 +2,7 @@
two_body_rdm two_body_rdm
============ ============
Contains the two rdms (aa,bb,ab) stored as plain arrays Contains the two rdms $\alpha\alpha$, $\beta\beta$ and $\alpha\beta$ stored as
maps, with pysicists notation, consistent with the two-electron integrals in the
MO basis.

View File

@ -1,443 +1,442 @@
subroutine all_two_rdm_dm_nstates_openmp(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze)
subroutine all_two_rdm_dm_nstates_openmp(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_0,N_st,sze) use bitmasks
use bitmasks implicit none
implicit none BEGIN_DOC
BEGIN_DOC ! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0> !
! ! Assumes that the determinants are in psi_det
! Assumes that the determinants are in psi_det !
! ! istart, iend, ishift, istep are used in ZMQ parallelization.
! istart, iend, ishift, istep are used in ZMQ parallelization. END_DOC
END_DOC integer, intent(in) :: N_st,sze
integer, intent(in) :: N_st,sze integer, intent(in) :: dim1,dim2,dim3,dim4
integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: u_0(sze,N_st)
double precision, intent(inout) :: u_0(sze,N_st) integer :: k
integer :: k double precision, allocatable :: u_t(:,:)
double precision, allocatable :: u_t(:,:) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t allocate(u_t(N_st,N_det))
allocate(u_t(N_st,N_det)) do k=1,N_st
do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) enddo
enddo call dtranspose( &
call dtranspose( & u_0, &
u_0, & size(u_0, 1), &
size(u_0, 1), & u_t, &
u_t, & size(u_t, 1), &
size(u_t, 1), & N_det, N_st)
N_det, N_st)
call all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
call all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1) deallocate(u_t)
deallocate(u_t)
do k=1,N_st
do k=1,N_st call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) enddo
enddo
end
end
subroutine all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
subroutine all_two_rdm_dm_nstates_openmp_work(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) use bitmasks
use bitmasks implicit none
implicit none BEGIN_DOC
BEGIN_DOC ! Computes two-rdm
! Computes two-rdm !
! ! Default should be 1,N_det,0,1
! Default should be 1,N_det,0,1 END_DOC
END_DOC integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: dim1,dim2,dim3,dim4
integer, intent(in) :: dim1,dim2,dim3,dim4 double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) double precision, intent(in) :: u_t(N_st,N_det)
double precision, intent(in) :: u_t(N_st,N_det)
PROVIDE N_int
PROVIDE N_int
select case (N_int)
select case (N_int) case (1)
case (1) call all_two_rdm_dm_nstates_openmp_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
call all_two_rdm_dm_nstates_openmp_work_1(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (2)
case (2) call all_two_rdm_dm_nstates_openmp_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
call all_two_rdm_dm_nstates_openmp_work_2(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (3)
case (3) call all_two_rdm_dm_nstates_openmp_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
call all_two_rdm_dm_nstates_openmp_work_3(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case (4)
case (4) call all_two_rdm_dm_nstates_openmp_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
call all_two_rdm_dm_nstates_openmp_work_4(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) case default
case default call all_two_rdm_dm_nstates_openmp_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
call all_two_rdm_dm_nstates_openmp_work_N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) end select
end select end
end
BEGIN_TEMPLATE
BEGIN_TEMPLATE
subroutine all_two_rdm_dm_nstates_openmp_work_$N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep) subroutine all_two_rdm_dm_nstates_openmp_work_$N_int(big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks use bitmasks
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$ ! Computes $v_t = H | u_t \\rangle$ and $s_t = S^2 | u_t \\rangle$
! !
! Default should be 1,N_det,0,1 ! Default should be 1,N_det,0,1
END_DOC END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det) double precision, intent(in) :: u_t(N_st,N_det)
integer, intent(in) :: dim1,dim2,dim3,dim4 integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states) double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
integer :: i,j,k,l integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate integer :: istate
integer :: krow, kcol, krow_b, kcol_b integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol integer :: lrow, lcol
integer :: mrow, mcol integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2) integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:) integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles integer :: n_doubles
integer, allocatable :: doubles(:) integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:) integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:) integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:) integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8 integer*8 :: k8
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1 maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab)) allocate(idx0(maxab))
do i=1,maxab do i=1,maxab
idx0(i) = i idx0(i) = i
enddo enddo
! Prepare the array of all alpha single excitations ! Prepare the array of all alpha single excitations
! ------------------------------------------------- ! -------------------------------------------------
PROVIDE N_int nthreads_davidson PROVIDE N_int nthreads_davidson
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) & !!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, & ! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
! !$OMP psi_bilinear_matrix_columns, & ! !$OMP psi_bilinear_matrix_columns, &
! !$OMP psi_det_alpha_unique, psi_det_beta_unique, & ! !$OMP psi_det_alpha_unique, psi_det_beta_unique,&
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int, & ! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
! !$OMP psi_bilinear_matrix_transp_rows, & ! !$OMP psi_bilinear_matrix_transp_rows, &
! !$OMP psi_bilinear_matrix_transp_columns, & ! !$OMP psi_bilinear_matrix_transp_columns, &
! !$OMP psi_bilinear_matrix_transp_order, N_st, & ! !$OMP psi_bilinear_matrix_transp_order, N_st, &
! !$OMP psi_bilinear_matrix_order_transp_reverse, & ! !$OMP psi_bilinear_matrix_order_transp_reverse, &
! !$OMP psi_bilinear_matrix_columns_loc, & ! !$OMP psi_bilinear_matrix_columns_loc, &
! !$OMP psi_bilinear_matrix_transp_rows_loc, & ! !$OMP psi_bilinear_matrix_transp_rows_loc, &
! !$OMP istart, iend, istep, irp_here, v_t, s_t, & ! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
! !$OMP ishift, idx0, u_t, maxab) & ! !$OMP ishift, idx0, u_t, maxab) &
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, & ! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
! !$OMP lcol, lrow, l_a, l_b, & ! !$OMP lcol, lrow, l_a, l_b, &
! !$OMP buffer, doubles, n_doubles, & ! !$OMP buffer, doubles, n_doubles, &
! !$OMP tmp_det2, idx, l, kcol_prev, & ! !$OMP tmp_det2, idx, l, kcol_prev, &
! !$OMP singles_a, n_singles_a, singles_b, & ! !$OMP singles_a, n_singles_a, singles_b, &
! !$OMP n_singles_b, k8) ! !$OMP n_singles_b, k8)
! Alpha/Beta double excitations ! Alpha/Beta double excitations
! ============================= ! =============================
allocate( buffer($N_int,maxab), & allocate( buffer($N_int,maxab), &
singles_a(maxab), & singles_a(maxab), &
singles_b(maxab), & singles_b(maxab), &
doubles(maxab), & doubles(maxab), &
idx(maxab)) idx(maxab))
kcol_prev=-1 kcol_prev=-1
ASSERT (iend <= N_det) ASSERT (iend <= N_det)
ASSERT (istart > 0) ASSERT (istart > 0)
ASSERT (istep > 0) ASSERT (istep > 0)
!!$OMP DO SCHEDULE(dynamic,64) !!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a) krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique) ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a) kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique) ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( & call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, & psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, & tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b) singles_b, n_singles_b)
endif endif
kcol_prev = kcol kcol_prev = kcol
! Loop over singly excited beta columns ! Loop over singly excited beta columns
! ------------------------------------- ! -------------------------------------
do i=1,n_singles_b do i=1,n_singles_b
lcol = singles_b(i) lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol) l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique) ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
idx(j) = l_a idx(j) = l_a
l_a = l_a+1 l_a = l_a+1
enddo enddo
j = j-1 j = j-1
call get_all_spin_singles_$N_int( & call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, & buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a ) singles_a, n_singles_a )
! Loop over alpha singles ! Loop over alpha singles
! ----------------------- ! -----------------------
do k = 1,n_singles_a do k = 1,n_singles_a
l_a = singles_a(k) l_a = singles_a(k)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique) ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij) !call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij)
do l= 1, N_states do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
enddo
enddo
enddo
! !$OMP END DO
! !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha exitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
do l= 1, N_states
c_1(l) = u_t(l,l_a) c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a) c_2(l) = u_t(l,k_a)
enddo enddo
call off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) ! increment the alpha/beta part for single excitations
enddo call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
! increment the alpha/alpha part for single excitations
enddo call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
enddo enddo
! !$OMP END DO
! !$OMP DO SCHEDULE(dynamic,64) ! Compute Hij for all alpha doubles
do k_a=istart+ishift,iend,istep ! ----------------------------------
do i=1,n_doubles
! Single and double alpha exitations l_a = doubles(i)
! =================================== ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
! Initial determinant is at k_a in alpha-major representation ASSERT (lrow <= N_det_alpha_unique)
! -----------------------------------------------------------------------
do l= 1, N_states
krow = psi_bilinear_matrix_rows(k_a) c_1(l) = u_t(l,l_a)
ASSERT (krow <= N_det_alpha_unique) c_2(l) = u_t(l,k_a)
enddo
kcol = psi_bilinear_matrix_columns(k_a) call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4)
ASSERT (kcol <= N_det_beta_unique) enddo
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) ! Single and double beta excitations
! ==================================
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
! Initial determinant is at k_a in alpha-major representation
k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ! -----------------------------------------------------------------------
ASSERT (k_b <= N_det)
krow = psi_bilinear_matrix_rows(k_a)
spindet(1:$N_int) = tmp_det(1:$N_int,1) kcol = psi_bilinear_matrix_columns(k_a)
! Loop inside the beta column to gather all the connected alphas tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
lcol = psi_bilinear_matrix_columns(k_a) tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique spindet(1:$N_int) = tmp_det(1:$N_int,2)
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a) ! Initial determinant is at k_b in beta-major representation
if (lcol /= kcol) exit ! -----------------------------------------------------------------------
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique) k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a ! Loop inside the alpha row to gather all the connected betas
l_a = l_a+1 lrow = psi_bilinear_matrix_transp_rows(k_b)
enddo l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
i = i-1 do i=1,N_det_beta_unique
if (l_b > N_det) exit
call get_all_spin_singles_and_doubles_$N_int( & lrow = psi_bilinear_matrix_transp_rows(l_b)
buffer, idx, spindet, i, & if (lrow /= krow) exit
singles_a, doubles, n_singles_a, n_doubles ) lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
! Compute Hij for all alpha singles
! ---------------------------------- buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol) l_b = l_b+1
do i=1,n_singles_a enddo
l_a = singles_a(i) i = i-1
ASSERT (l_a <= N_det)
call get_all_spin_singles_and_doubles_$N_int( &
lrow = psi_bilinear_matrix_rows(l_a) buffer, idx, spindet, i, &
ASSERT (lrow <= N_det_alpha_unique) singles_b, doubles, n_singles_b, n_doubles )
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) ! Compute Hij for all beta singles
do l= 1, N_states ! ----------------------------------
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
enddo do i=1,n_singles_b
! increment the alpha/beta part for single excitations l_b = singles_b(i)
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4) ASSERT (l_b <= N_det)
! increment the alpha/alpha part for single excitations
call off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4) lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
enddo
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
! Compute Hij for all alpha doubles do l= 1, N_states
! ---------------------------------- c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
do i=1,n_doubles enddo
l_a = doubles(i) ! increment the alpha/beta part for single excitations
ASSERT (l_a <= N_det) call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
! increment the beta /beta part for single excitations
lrow = psi_bilinear_matrix_rows(l_a) call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
ASSERT (lrow <= N_det_alpha_unique) enddo
do l= 1, N_states ! Compute Hij for all beta doubles
c_1(l) = u_t(l,l_a) ! ----------------------------------
c_2(l) = u_t(l,k_a)
enddo do i=1,n_doubles
call off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,c_2,big_array_aa,dim1,dim2,dim3,dim4) l_b = doubles(i)
enddo ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
! Single and double beta excitations ASSERT (lcol <= N_det_beta_unique)
! ==================================
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
! Initial determinant is at k_a in alpha-major representation c_1(l) = u_t(l,l_a)
! ----------------------------------------------------------------------- c_2(l) = u_t(l,k_a)
enddo
krow = psi_bilinear_matrix_rows(k_a) call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
kcol = psi_bilinear_matrix_columns(k_a) ASSERT (l_a <= N_det)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow) enddo
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2) ! Diagonal contribution
! =====================
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
! Initial determinant is at k_a in alpha-major representation
k_b = psi_bilinear_matrix_order_transp_reverse(k_a) ! -----------------------------------------------------------------------
ASSERT (k_b <= N_det)
krow = psi_bilinear_matrix_rows(k_a)
! Loop inside the alpha row to gather all the connected betas ASSERT (krow <= N_det_alpha_unique)
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow) kcol = psi_bilinear_matrix_columns(k_a)
do i=1,N_det_beta_unique ASSERT (kcol <= N_det_beta_unique)
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b) tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
if (lrow /= krow) exit tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique) double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol) double precision :: c_1(N_states),c_2(N_states)
idx(i) = l_b do l = 1, N_states
l_b = l_b+1 c_1(l) = u_t(l,k_a)
enddo enddo
i = i-1
call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, & end do
singles_b, doubles, n_singles_b, n_doubles ) !!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx)
! Compute Hij for all beta singles !!$OMP END PARALLEL
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
! increment the alpha/beta part for single excitations
call off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array_ab,dim1,dim2,dim3,dim4)
! increment the beta /beta part for single excitations
call off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
enddo
! Compute Hij for all beta doubles
! ----------------------------------
do i=1,n_doubles
l_b = doubles(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
ASSERT (l_a <= N_det)
enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
do l = 1, N_states
c_1(l) = u_t(l,k_a)
enddo
call diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_1,big_array_aa,big_array_bb,big_array_ab,dim1,dim2,dim3,dim4)
end do
!!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx)
!!$OMP END PARALLEL
end end
SUBST [ N_int ] SUBST [ N_int ]
1;; 1;;
2;; 2;;
3;; 3;;
4;; 4;;
N_int;; N_int;;
END_TEMPLATE END_TEMPLATE

View File

@ -1,84 +1,62 @@
BEGIN_PROVIDER [double precision, coussin_peter_two_rdm_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! coussin_peter_two_rdm_mo(i,j,k,l) = the two rdm that peter wants for his CASSCF
END_DOC
integer :: i,j,k,l
do l = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do i = 1, mo_num
coussin_peter_two_rdm_mo(i,j,k,l,:) = 0.5d0 * (two_rdm_alpha_beta_mo(i,j,k,l,:) + two_rdm_alpha_beta_mo(i,j,k,l,:)) &
+ two_rdm_alpha_alpha_mo(i,j,k,l,:) &
+ two_rdm_beta_beta_mo(i,j,k,l,:)
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! two_rdm_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi> ! two_rdm_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
! 1 1 2 2 = chemist notations ! 1 1 2 2 = chemist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
! !
END_DOC END_DOC
integer :: dim1,dim2,dim3,dim4 integer :: dim1,dim2,dim3,dim4
double precision :: cpu_0,cpu_1 double precision :: cpu_0,cpu_1
dim1 = mo_num dim1 = mo_num
dim2 = mo_num dim2 = mo_num
dim3 = mo_num dim3 = mo_num
dim4 = mo_num dim4 = mo_num
two_rdm_alpha_beta_mo = 0.d0 two_rdm_alpha_beta_mo = 0.d0
two_rdm_alpha_alpha_mo= 0.d0 two_rdm_alpha_alpha_mo= 0.d0
two_rdm_beta_beta_mo = 0.d0 two_rdm_beta_beta_mo = 0.d0
print*,'providing two_rdm_alpha_beta ...' print*,'providing two_rdm_alpha_beta ...'
call wall_time(cpu_0) call wall_time(cpu_0)
call all_two_rdm_dm_nstates_openmp(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1)) call all_two_rdm_dm_nstates_openmp(two_rdm_alpha_alpha_mo,two_rdm_beta_beta_mo,two_rdm_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(cpu_1) call wall_time(cpu_1)
print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0) print*,'two_rdm_alpha_beta provided in',dabs(cpu_1-cpu_0)
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)] BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_alpha_alpha_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
&BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)] &BEGIN_PROVIDER [double precision, two_rdm_beta_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi> ! two_rdm_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
! 1 2 1 2 = physicist notations ! 1 2 1 2 = physicist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry ! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
! !
END_DOC END_DOC
integer :: i,j,k,l,istate integer :: i,j,k,l,istate
double precision :: cpu_0,cpu_1 double precision :: cpu_0,cpu_1
two_rdm_alpha_beta_mo_physicist = 0.d0 two_rdm_alpha_beta_mo_physicist = 0.d0
print*,'providing two_rdm_alpha_beta_mo_physicist ...' print*,'providing two_rdm_alpha_beta_mo_physicist ...'
call wall_time(cpu_0) call wall_time(cpu_0)
do istate = 1, N_states do istate = 1, N_states
do i = 1, mo_num do i = 1, mo_num
do j = 1, mo_num do j = 1, mo_num
do k = 1, mo_num do k = 1, mo_num
do l = 1, mo_num do l = 1, mo_num
! 1 2 1 2 1 1 2 2 ! 1 2 1 2 1 1 2 2
two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate) two_rdm_alpha_beta_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_beta_mo(i,l,j,k,istate)
two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate) two_rdm_alpha_alpha_mo_physicist(l,k,i,j,istate) = two_rdm_alpha_alpha_mo(i,l,j,k,istate)
two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate) two_rdm_beta_beta_mo_physicist(l,k,i,j,istate) = two_rdm_beta_beta_mo(i,l,j,k,istate)
enddo enddo
enddo
enddo
enddo enddo
enddo
enddo enddo
enddo call wall_time(cpu_1)
call wall_time(cpu_1) print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
print*,'two_rdm_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
END_PROVIDER
END_PROVIDER