9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-01 05:33:40 +02:00

Compare commits

..

3 Commits

Author SHA1 Message Date
Emmanuel Giner
e3779e3c63 bug fixed in openmp 2 rdms 2019-07-04 18:04:43 +02:00
Emmanuel Giner
887afe97b4 two rdm seems to work with buffer, ready for openmp 2019-07-04 17:34:56 +02:00
Emmanuel Giner
59aaf3806d the alpha/beta single work 2019-07-04 16:43:08 +02:00
7 changed files with 605 additions and 466 deletions

View File

@ -322,6 +322,7 @@ END_PROVIDER
enddo enddo
print *, 'Active MOs:' print *, 'Active MOs:'
print *, list_act(1:n_act_orb) print *, list_act(1:n_act_orb)
print*, list_act_reverse(1:n_act_orb)
END_PROVIDER END_PROVIDER

View File

@ -392,7 +392,7 @@ subroutine all_two_rdm_dm_nstates_work_$N_int(big_array_aa,big_array_bb,big_arra
c_1(l) = u_t(l,l_a) c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a) c_2(l) = u_t(l,k_a)
enddo enddo
call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4) call off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_1,c_2,big_array_bb,dim1,dim2,dim3,dim4)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
enddo enddo

View File

@ -442,7 +442,7 @@ subroutine orb_range_all_states_two_rdm_work_$N_int(big_array,dim1,norb,list_orb
c_2(l) = u_t(l,k_a) c_2(l) = u_t(l,k_a)
c_contrib(l) = c_1(l) * c_2(l) c_contrib(l) = c_1(l) * c_2(l)
enddo enddo
call orb_range_off_diagonal_double_to_two_rdm_bb_dm_all_states(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) call orb_range_off_diagonal_double_to_two_rdm_bb_dm_all_states(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_contrib,N_st,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
enddo enddo

View File

@ -30,6 +30,7 @@ subroutine orb_range_two_rdm_state_av(big_array,dim1,norb,list_orb,list_orb_reve
u_t, & u_t, &
size(u_t, 1), & size(u_t, 1), &
N_det, N_st) N_det, N_st)
call orb_range_two_rdm_state_av_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1) call orb_range_two_rdm_state_av_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t) deallocate(u_t)
@ -135,6 +136,7 @@ subroutine orb_range_two_rdm_state_av_work_$N_int(big_array,dim1,norb,list_orb,l
stop stop
endif endif
PROVIDE N_int PROVIDE N_int
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int) call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
@ -443,7 +445,7 @@ subroutine orb_range_two_rdm_state_av_work_$N_int(big_array,dim1,norb,list_orb,l
c_2(l) = u_t(l,k_a) c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l) c_average += c_1(l) * c_2(l) * state_weights(l)
enddo enddo
call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
enddo enddo

View File

@ -93,11 +93,9 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer :: i,j,k,l integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b integer :: k_a, k_b, l_a, l_b
integer :: istate integer :: krow, kcol
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int) integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2) integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2) integer(bit_kind) :: tmp_det2($N_int,2)
@ -109,7 +107,6 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
integer, allocatable :: singles_b(:) integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:) integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
double precision :: c_average double precision :: c_average
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
@ -136,16 +133,11 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
stop stop
endif endif
!do i = 1, N_int
! det_1_act(i,1) = iand(det_1(i,1),orb_bitmask(i))
! det_1_act(i,2) = iand(det_1(i,2),orb_bitmask(i))
!enddo
PROVIDE N_int PROVIDE N_int
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int) call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
sze_buff = norb ** 3 sze_buff = norb ** 3 + 6 * norb
list_orb_reverse = -1000 list_orb_reverse = -1000
do i = 1, norb do i = 1, norb
list_orb_reverse(list_orb(i)) = i list_orb_reverse(list_orb(i)) = i
@ -173,13 +165,13 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
! !$OMP psi_bilinear_matrix_columns_loc, & ! !$OMP psi_bilinear_matrix_columns_loc, &
! !$OMP psi_bilinear_matrix_transp_rows_loc, & ! !$OMP psi_bilinear_matrix_transp_rows_loc, &
! !$OMP istart, iend, istep, irp_here, v_t, s_t, & ! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
! !$OMP ishift, idx0, u_t, maxab) & ! !$OMP ishift, idx0, u_t, maxab, alpha_alpha,beta_beta,alpha_beta,spin_trace,ispin) &
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,& ! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
! !$OMP lcol, lrow, l_a, l_b, & ! !$OMP lcol, lrow, l_a, l_b, &
! !$OMP buffer, doubles, n_doubles, & ! !$OMP buffer, doubles, n_doubles, &
! !$OMP tmp_det2, idx, l, kcol_prev, & ! !$OMP tmp_det2, idx, l, kcol_prev, &
! !$OMP singles_a, n_singles_a, singles_b, & ! !$OMP singles_a, n_singles_a, singles_b, &
! !$OMP n_singles_b, k8) ! !$OMP n_singles_b, nkeys, keys, valus, c_average)
! Alpha/Beta double excitations ! Alpha/Beta double excitations
! ============================= ! =============================
@ -353,9 +345,17 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
enddo enddo
if(alpha_beta.or.spin_trace.or.alpha_alpha)then if(alpha_beta.or.spin_trace.or.alpha_alpha)then
! increment the alpha/beta part for single excitations ! increment the alpha/beta part for single excitations
!!!! call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) if (nkeys+ 2 * norb .ge. size(values)) then
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
nkeys = 0
endif
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! increment the alpha/alpha part for single excitations ! increment the alpha/alpha part for single excitations
!!!! call orb_range_off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) if (nkeys+4 * norb .ge. size(values)) then
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
nkeys = 0
endif
call orb_range_off_diag_single_to_two_rdm_aa_dm_buffer(tmp_det,tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
endif endif
enddo enddo
@ -378,7 +378,11 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
c_2(l) = u_t(l,k_a) c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l) c_average += c_1(l) * c_2(l) * state_weights(l)
enddo enddo
!!!! call orb_range_off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) if (nkeys+4 .ge. size(values)) then
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
nkeys = 0
endif
call orb_range_off_diag_double_to_two_rdm_aa_dm_buffer(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
enddo enddo
endif endif
@ -445,9 +449,17 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
enddo enddo
if(alpha_beta.or.spin_trace.or.beta_beta)then if(alpha_beta.or.spin_trace.or.beta_beta)then
! increment the alpha/beta part for single excitations ! increment the alpha/beta part for single excitations
!!!! call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) if (nkeys+2 * norb .ge. size(values)) then
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
nkeys = 0
endif
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! increment the beta /beta part for single excitations ! increment the beta /beta part for single excitations
!!!! call orb_range_off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) if (nkeys+4 * norb .ge. size(values)) then
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
nkeys = 0
endif
call orb_range_off_diag_single_to_two_rdm_bb_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
endif endif
enddo enddo
@ -469,7 +481,11 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
c_2(l) = u_t(l,k_a) c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l) c_average += c_1(l) * c_2(l) * state_weights(l)
enddo enddo
!!!! call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin) if (nkeys+4 .ge. size(values)) then
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
nkeys = 0
endif
call orb_range_off_diag_double_to_two_rdm_bb_dm_buffer(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
ASSERT (l_a <= N_det) ASSERT (l_a <= N_det)
enddo enddo
@ -509,7 +525,7 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
end do end do
!!$OMP END DO !!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx) deallocate(buffer, singles_a, singles_b, doubles, idx, keys, values)
!!$OMP END PARALLEL !!$OMP END PARALLEL
end end

View File

@ -13,7 +13,7 @@
double precision, intent(in) :: c_1 double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2) integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2) integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate integer :: i,j,h1,h2
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int) call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do i = 1, n_occ_ab(1) do i = 1, n_occ_ab(1)
h1 = occ(i,1) h1 = occ(i,1)
@ -53,7 +53,7 @@
integer :: occ(N_int*bit_kind_size,2) integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2) integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate integer :: i,j,h1,h2
integer(bit_kind) :: det_1_act(N_int,2) integer(bit_kind) :: det_1_act(N_int,2)
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
do i = 1, N_int do i = 1, N_int
@ -193,7 +193,7 @@
integer(bit_kind), intent(in) :: orb_bitmask(N_int) integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num) integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1 double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2,istate integer :: i,j,h1,h2,p1,p2
integer :: exc(0:2,2,2) integer :: exc(0:2,2,2)
double precision :: phase double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
@ -278,7 +278,7 @@
integer :: occ(N_int*bit_kind_size,2) integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2) integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1 integer :: i,j,h1,h2,p1
integer :: exc(0:2,2,2) integer :: exc(0:2,2,2)
double precision :: phase double precision :: phase
@ -397,7 +397,7 @@
integer :: occ(N_int*bit_kind_size,2) integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2) integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1 integer :: i,j,h1,h2,p1
integer :: exc(0:2,2,2) integer :: exc(0:2,2,2)
double precision :: phase double precision :: phase
@ -477,7 +477,7 @@
integer :: occ(N_int*bit_kind_size,2) integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2) integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1 integer :: i,j,h1,h2,p1
integer :: exc(0:2,2,2) integer :: exc(0:2,2,2)
double precision :: phase double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
@ -510,18 +510,16 @@
p1 = exc(1,2,2) p1 = exc(1,2,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1) p1 = list_orb_reverse(p1)
do istate = 1, N_states do i = 1, n_occ_ab(2)
do i = 1, n_occ_ab(2) h2 = occ(i,2)
h2 = occ(i,2) if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle h2 = list_orb_reverse(h2)
h2 = list_orb_reverse(h2) big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
enddo enddo
enddo
endif endif
endif endif
end end
@ -557,7 +555,7 @@
integer, intent(in) :: list_orb_reverse(mo_num) integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1 double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2,istate integer :: i,j,h1,h2,p1,p2
integer :: exc(0:2,2) integer :: exc(0:2,2)
double precision :: phase double precision :: phase
@ -590,13 +588,11 @@
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
p2 = list_orb_reverse(p2) p2 = list_orb_reverse(p2)
if(alpha_alpha.or.spin_trace)then if(alpha_alpha.or.spin_trace)then
do istate = 1, N_states
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase
enddo
endif endif
end end
@ -631,7 +627,7 @@
integer, intent(in) :: list_orb_reverse(mo_num) integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1 double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2,istate integer :: i,j,h1,h2,p1,p2
integer :: exc(0:2,2) integer :: exc(0:2,2)
double precision :: phase double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace

View File

@ -26,7 +26,7 @@
integer :: occ(N_int*bit_kind_size,2) integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2) integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate integer :: i,j,h1,h2
integer(bit_kind) :: det_1_act(N_int,2) integer(bit_kind) :: det_1_act(N_int,2)
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
do i = 1, N_int do i = 1, N_int
@ -201,7 +201,7 @@
double precision, intent(out) :: values(sze_buff) double precision, intent(out) :: values(sze_buff)
integer , intent(out) :: keys(4,sze_buff) integer , intent(out) :: keys(4,sze_buff)
integer , intent(inout):: nkeys integer , intent(inout):: nkeys
integer :: i,j,h1,h2,p1,p2,istate integer :: i,j,h1,h2,p1,p2
integer :: exc(0:2,2,2) integer :: exc(0:2,2,2)
double precision :: phase double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
@ -255,429 +255,553 @@
endif endif
end end
! subroutine orb_range_off_diagonal_single_to_two_rdm_ab_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin) subroutine orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! use bitmasks use bitmasks
! BEGIN_DOC BEGIN_DOC
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for ! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!! !
!! a given couple of determinant det_1, det_2 being a SINGLE excitation with respect to one another ! a given couple of determinant det_1, det_2 being a SINGLE excitation with respect to one another
!! !
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1 ! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!! !
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation ! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!! !
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals ! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!! !
!! ispin determines which spin-spin component of the two-rdm you will update ! ispin determines which spin-spin component of the two-rdm you will update
!! !
!! ispin == 1 :: alpha/ alpha ! ispin == 1 :: alpha/ alpha
!! ispin == 2 :: beta / beta ! ispin == 2 :: beta / beta
!! ispin == 3 :: alpha/ beta ! ispin == 3 :: alpha/ beta
!! ispin == 4 :: spin traced <=> total two-rdm ! ispin == 4 :: spin traced <=> total two-rdm
!! !
!! here, only ispin == 3 or 4 will do something ! here, only ispin == 3 or 4 will do something
! END_DOC END_DOC
! implicit none implicit none
! integer, intent(in) :: dim1,ispin integer, intent(in) :: ispin,sze_buff
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
! integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2) integer, intent(in) :: list_orb_reverse(mo_num)
! integer(bit_kind), intent(in) :: orb_bitmask(N_int) double precision, intent(in) :: c_1
! integer, intent(in) :: list_orb_reverse(mo_num) double precision, intent(out) :: values(sze_buff)
! double precision, intent(in) :: c_1 integer , intent(out) :: keys(4,sze_buff)
! integer , intent(inout):: nkeys
! integer :: occ(N_int*bit_kind_size,2)
! integer :: n_occ_ab(2) integer :: occ(N_int*bit_kind_size,2)
! integer :: i,j,h1,h2,istate,p1 integer :: n_occ_ab(2)
! integer :: exc(0:2,2,2) integer :: i,j,h1,h2,p1
! double precision :: phase integer :: exc(0:2,2,2)
! double precision :: phase
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
! logical :: is_integer_in_string logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
! alpha_alpha = .False. logical :: is_integer_in_string
! beta_beta = .False. alpha_alpha = .False.
! alpha_beta = .False. beta_beta = .False.
! spin_trace = .False. alpha_beta = .False.
! if( ispin == 1)then spin_trace = .False.
! alpha_alpha = .True. if( ispin == 1)then
! else if(ispin == 2)then alpha_alpha = .True.
! beta_beta = .True. else if(ispin == 2)then
! else if(ispin == 3)then beta_beta = .True.
! alpha_beta = .True. else if(ispin == 3)then
! else if(ispin == 4)then alpha_beta = .True.
! spin_trace = .True. else if(ispin == 4)then
! endif spin_trace = .True.
! endif
! call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
! call get_single_excitation(det_1,det_2,exc,phase,N_int) call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
! if(alpha_beta)then call get_single_excitation(det_1,det_2,exc,phase,N_int)
! if (exc(0,1,1) == 1) then if(alpha_beta)then
! ! Mono alpha if (exc(0,1,1) == 1) then
! h1 = exc(1,1,1) ! Mono alpha
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return h1 = exc(1,1,1)
! h1 = list_orb_reverse(h1) if(list_orb_reverse(h1).lt.0)return
! p1 = exc(1,2,1) h1 = list_orb_reverse(h1)
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return p1 = exc(1,2,1)
! p1 = list_orb_reverse(p1) if(list_orb_reverse(p1).lt.0)return
! do i = 1, n_occ_ab(2) p1 = list_orb_reverse(p1)
! h2 = occ(i,2) do i = 1, n_occ_ab(2)
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle h2 = occ(i,2)
! h2 = list_orb_reverse(h2) if(list_orb_reverse(h2).lt.0)return
! big_array(h1,h2,p1,h2) += c_1 * phase h2 = list_orb_reverse(h2)
! enddo nkeys += 1
! else values(nkeys) = c_1 * phase
! ! Mono beta keys(1,nkeys) = h1
! h1 = exc(1,1,2) keys(2,nkeys) = h2
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return keys(3,nkeys) = p1
! h1 = list_orb_reverse(h1) keys(4,nkeys) = h2
! p1 = exc(1,2,2) enddo
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return else
! p1 = list_orb_reverse(p1) ! Mono beta
! do i = 1, n_occ_ab(1) h1 = exc(1,1,2)
! h2 = occ(i,1) if(list_orb_reverse(h1).lt.0)return
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle h1 = list_orb_reverse(h1)
! h2 = list_orb_reverse(h2) p1 = exc(1,2,2)
! big_array(h2,h1,h2,p1) += c_1 * phase if(list_orb_reverse(p1).lt.0)return
! enddo p1 = list_orb_reverse(p1)
! endif do i = 1, n_occ_ab(1)
! else if(spin_trace)then h2 = occ(i,1)
! if (exc(0,1,1) == 1) then if(list_orb_reverse(h2).lt.0)return
! ! Mono alpha h2 = list_orb_reverse(h2)
! h1 = exc(1,1,1) nkeys += 1
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return values(nkeys) = c_1 * phase
! h1 = list_orb_reverse(h1) keys(1,nkeys) = h1
! p1 = exc(1,2,1) keys(2,nkeys) = h2
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return keys(3,nkeys) = p1
! p1 = list_orb_reverse(p1) keys(4,nkeys) = h2
! do i = 1, n_occ_ab(2) enddo
! h2 = occ(i,2) endif
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle else if(spin_trace)then
! h2 = list_orb_reverse(h2) if (exc(0,1,1) == 1) then
! big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase ! Mono alpha
! big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase h1 = exc(1,1,1)
! enddo if(list_orb_reverse(h1).lt.0)return
! else h1 = list_orb_reverse(h1)
! ! Mono beta p1 = exc(1,2,1)
! h1 = exc(1,1,2) if(list_orb_reverse(p1).lt.0)return
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return p1 = list_orb_reverse(p1)
! h1 = list_orb_reverse(h1) do i = 1, n_occ_ab(2)
! p1 = exc(1,2,2) h2 = occ(i,2)
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return if(list_orb_reverse(h2).lt.0)return
! p1 = list_orb_reverse(p1) h2 = list_orb_reverse(h2)
! do i = 1, n_occ_ab(1) nkeys += 1
! h2 = occ(i,1) values(nkeys) = 0.5d0 * c_1 * phase
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle keys(1,nkeys) = h1
! h2 = list_orb_reverse(h2) keys(2,nkeys) = h2
! big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase keys(3,nkeys) = p1
! big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase keys(4,nkeys) = h2
! enddo nkeys += 1
! endif values(nkeys) = 0.5d0 * c_1 * phase
! endif keys(1,nkeys) = h2
! end keys(2,nkeys) = h1
keys(3,nkeys) = h2
keys(4,nkeys) = p1
enddo
else
! Mono beta
h1 = exc(1,1,2)
if(list_orb_reverse(h1).lt.0)return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(list_orb_reverse(p1).lt.0)return
p1 = list_orb_reverse(p1)
!print*,'****************'
!print*,'****************'
!print*,'h1,p1',h1,p1
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
if(list_orb_reverse(h2).lt.0)return
h2 = list_orb_reverse(h2)
! print*,'h2 = ',h2
nkeys += 1
values(nkeys) = 0.5d0 * c_1 * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = h2
nkeys += 1
values(nkeys) = 0.5d0 * c_1 * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = h2
keys(4,nkeys) = p1
enddo
endif
endif
end
! subroutine orb_range_off_diagonal_single_to_two_rdm_aa_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin) subroutine orb_range_off_diag_single_to_two_rdm_aa_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! BEGIN_DOC BEGIN_DOC
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for ! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!! !
!! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another ! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another
!! !
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1 ! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!! !
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation ! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!! !
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals ! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!! !
!! ispin determines which spin-spin component of the two-rdm you will update ! ispin determines which spin-spin component of the two-rdm you will update
!! !
!! ispin == 1 :: alpha/ alpha ! ispin == 1 :: alpha/ alpha
!! ispin == 2 :: beta / beta ! ispin == 2 :: beta / beta
!! ispin == 3 :: alpha/ beta ! ispin == 3 :: alpha/ beta
!! ispin == 4 :: spin traced <=> total two-rdm ! ispin == 4 :: spin traced <=> total two-rdm
!! !
!! here, only ispin == 1 or 4 will do something ! here, only ispin == 1 or 4 will do something
! END_DOC END_DOC
! use bitmasks use bitmasks
! implicit none implicit none
! integer, intent(in) :: dim1,ispin integer, intent(in) :: ispin,sze_buff
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
! integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2) integer, intent(in) :: list_orb_reverse(mo_num)
! integer(bit_kind), intent(in) :: orb_bitmask(N_int) double precision, intent(in) :: c_1
! integer, intent(in) :: list_orb_reverse(mo_num) double precision, intent(out) :: values(sze_buff)
! double precision, intent(in) :: c_1 integer , intent(out) :: keys(4,sze_buff)
! integer , intent(inout):: nkeys
! integer :: occ(N_int*bit_kind_size,2)
! integer :: n_occ_ab(2) integer :: occ(N_int*bit_kind_size,2)
! integer :: i,j,h1,h2,istate,p1 integer :: n_occ_ab(2)
! integer :: exc(0:2,2,2) integer :: i,j,h1,h2,p1
! double precision :: phase integer :: exc(0:2,2,2)
! double precision :: phase
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
! logical :: is_integer_in_string logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
! alpha_alpha = .False. logical :: is_integer_in_string
! beta_beta = .False. alpha_alpha = .False.
! alpha_beta = .False. beta_beta = .False.
! spin_trace = .False. alpha_beta = .False.
! if( ispin == 1)then spin_trace = .False.
! alpha_alpha = .True. if( ispin == 1)then
! else if(ispin == 2)then alpha_alpha = .True.
! beta_beta = .True. else if(ispin == 2)then
! else if(ispin == 3)then beta_beta = .True.
! alpha_beta = .True. else if(ispin == 3)then
! else if(ispin == 4)then alpha_beta = .True.
! spin_trace = .True. else if(ispin == 4)then
! endif spin_trace = .True.
! endif
! call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
! call get_single_excitation(det_1,det_2,exc,phase,N_int) call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
! if(alpha_alpha.or.spin_trace)then call get_single_excitation(det_1,det_2,exc,phase,N_int)
! if (exc(0,1,1) == 1) then if(alpha_alpha.or.spin_trace)then
! ! Mono alpha if (exc(0,1,1) == 1) then
! h1 = exc(1,1,1) ! Mono alpha
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return h1 = exc(1,1,1)
! h1 = list_orb_reverse(h1) if(list_orb_reverse(h1).lt.0)return
! p1 = exc(1,2,1) h1 = list_orb_reverse(h1)
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return p1 = exc(1,2,1)
! p1 = list_orb_reverse(p1) if(list_orb_reverse(p1).lt.0)return
! do i = 1, n_occ_ab(1) p1 = list_orb_reverse(p1)
! h2 = occ(i,1) do i = 1, n_occ_ab(1)
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle h2 = occ(i,1)
! h2 = list_orb_reverse(h2) if(list_orb_reverse(h2).lt.0)return
! big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase h2 = list_orb_reverse(h2)
! big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
!
! big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
! big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
! enddo
! else
! return
! endif
! endif
! end
! subroutine orb_range_off_diagonal_single_to_two_rdm_bb_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin) nkeys += 1
! use bitmasks values(nkeys) = 0.5d0 * c_1 * phase
! BEGIN_DOC keys(1,nkeys) = h1
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for keys(2,nkeys) = h2
!! keys(3,nkeys) = p1
!! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another keys(4,nkeys) = h2
!!
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1 nkeys += 1
!! values(nkeys) = - 0.5d0 * c_1 * phase
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation keys(1,nkeys) = h1
!! keys(2,nkeys) = h2
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals keys(3,nkeys) = h2
!! keys(4,nkeys) = p1
!! ispin determines which spin-spin component of the two-rdm you will update
!! nkeys += 1
!! ispin == 1 :: alpha/ alpha values(nkeys) = 0.5d0 * c_1 * phase
!! ispin == 2 :: beta / beta keys(1,nkeys) = h2
!! ispin == 3 :: alpha/ beta keys(2,nkeys) = h1
!! ispin == 4 :: spin traced <=> total two-rdm keys(3,nkeys) = h2
!! keys(4,nkeys) = p1
!! here, only ispin == 2 or 4 will do something
! END_DOC nkeys += 1
! implicit none values(nkeys) = - 0.5d0 * c_1 * phase
! integer, intent(in) :: dim1,ispin keys(1,nkeys) = h2
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) keys(2,nkeys) = h1
! integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2) keys(3,nkeys) = p1
! integer(bit_kind), intent(in) :: orb_bitmask(N_int) keys(4,nkeys) = h2
! integer, intent(in) :: list_orb_reverse(mo_num) enddo
! double precision, intent(in) :: c_1 else
! return
! endif
! integer :: occ(N_int*bit_kind_size,2) endif
! integer :: n_occ_ab(2) end
! integer :: i,j,h1,h2,istate,p1
! integer :: exc(0:2,2,2) subroutine orb_range_off_diag_single_to_two_rdm_bb_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! double precision :: phase use bitmasks
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace BEGIN_DOC
! logical :: is_integer_in_string ! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
! alpha_alpha = .False. !
! beta_beta = .False. ! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another
! alpha_beta = .False. !
! spin_trace = .False. ! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
! if( ispin == 1)then !
! alpha_alpha = .True. ! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
! else if(ispin == 2)then !
! beta_beta = .True. ! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
! else if(ispin == 3)then !
! alpha_beta = .True. ! ispin determines which spin-spin component of the two-rdm you will update
! else if(ispin == 4)then !
! spin_trace = .True. ! ispin == 1 :: alpha/ alpha
! endif ! ispin == 2 :: beta / beta
! ! ispin == 3 :: alpha/ beta
! ! ispin == 4 :: spin traced <=> total two-rdm
! call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int) !
! call get_single_excitation(det_1,det_2,exc,phase,N_int) ! here, only ispin == 2 or 4 will do something
! if(beta_beta.or.spin_trace)then END_DOC
! if (exc(0,1,1) == 1) then implicit none
! return integer, intent(in) :: ispin,sze_buff
! else integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
! ! Mono beta integer, intent(in) :: list_orb_reverse(mo_num)
! h1 = exc(1,1,2) double precision, intent(in) :: c_1
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return double precision, intent(out) :: values(sze_buff)
! h1 = list_orb_reverse(h1) integer , intent(out) :: keys(4,sze_buff)
! p1 = exc(1,2,2) integer , intent(inout):: nkeys
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
! p1 = list_orb_reverse(p1) integer :: occ(N_int*bit_kind_size,2)
! do istate = 1, N_states integer :: n_occ_ab(2)
! do i = 1, n_occ_ab(2) integer :: i,j,h1,h2,p1
! h2 = occ(i,2) integer :: exc(0:2,2,2)
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle double precision :: phase
! h2 = list_orb_reverse(h2) logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
! big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase logical :: is_integer_in_string
! big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase alpha_alpha = .False.
! beta_beta = .False.
! big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase alpha_beta = .False.
! big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase spin_trace = .False.
! enddo if( ispin == 1)then
! enddo alpha_alpha = .True.
! endif else if(ispin == 2)then
! endif beta_beta = .True.
! end else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if(beta_beta.or.spin_trace)then
if (exc(0,1,1) == 1) then
return
else
! Mono beta
h1 = exc(1,1,2)
if(list_orb_reverse(h1).lt.0)return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(list_orb_reverse(p1).lt.0)return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
if(list_orb_reverse(h2).lt.0)return
h2 = list_orb_reverse(h2)
nkeys += 1
values(nkeys) = 0.5d0 * c_1 * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = h2
nkeys += 1
values(nkeys) = - 0.5d0 * c_1 * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = h2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = 0.5d0 * c_1 * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = h2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = - 0.5d0 * c_1 * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p1
keys(4,nkeys) = h2
enddo
endif
endif
end
! subroutine orb_range_off_diagonal_double_to_two_rdm_aa_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin) subroutine orb_range_off_diag_double_to_two_rdm_aa_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! use bitmasks use bitmasks
! BEGIN_DOC BEGIN_DOC
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for ! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!! !
!! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another ! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another
!! !
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1 ! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!! !
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation ! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!! !
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals ! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!! !
!! ispin determines which spin-spin component of the two-rdm you will update ! ispin determines which spin-spin component of the two-rdm you will update
!! !
!! ispin == 1 :: alpha/ alpha ! ispin == 1 :: alpha/ alpha
!! ispin == 2 :: beta / beta ! ispin == 2 :: beta / beta
!! ispin == 3 :: alpha/ beta ! ispin == 3 :: alpha/ beta
!! ispin == 4 :: spin traced <=> total two-rdm ! ispin == 4 :: spin traced <=> total two-rdm
!! !
!! here, only ispin == 1 or 4 will do something ! here, only ispin == 1 or 4 will do something
! END_DOC END_DOC
! implicit none implicit none
! integer, intent(in) :: dim1,ispin integer, intent(in) :: ispin,sze_buff
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
! integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int) integer, intent(in) :: list_orb_reverse(mo_num)
! integer(bit_kind), intent(in) :: orb_bitmask(N_int) double precision, intent(in) :: c_1
! integer, intent(in) :: list_orb_reverse(mo_num) double precision, intent(out) :: values(sze_buff)
! double precision, intent(in) :: c_1 integer , intent(out) :: keys(4,sze_buff)
! integer , intent(inout):: nkeys
! integer :: i,j,h1,h2,p1,p2,istate
! integer :: exc(0:2,2)
! double precision :: phase integer :: i,j,h1,h2,p1,p2
! integer :: exc(0:2,2)
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace double precision :: phase
! logical :: is_integer_in_string
! alpha_alpha = .False. logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
! beta_beta = .False. logical :: is_integer_in_string
! alpha_beta = .False. alpha_alpha = .False.
! spin_trace = .False. beta_beta = .False.
! if( ispin == 1)then alpha_beta = .False.
! alpha_alpha = .True. spin_trace = .False.
! else if(ispin == 2)then if( ispin == 1)then
! beta_beta = .True. alpha_alpha = .True.
! else if(ispin == 3)then else if(ispin == 2)then
! alpha_beta = .True. beta_beta = .True.
! else if(ispin == 4)then else if(ispin == 3)then
! spin_trace = .True. alpha_beta = .True.
! endif else if(ispin == 4)then
! call get_double_excitation_spin(det_1,det_2,exc,phase,N_int) spin_trace = .True.
! h1 =exc(1,1) endif
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
! h1 = list_orb_reverse(h1) h1 =exc(1,1)
! h2 =exc(2,1) if(list_orb_reverse(h1).lt.0)return
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return h1 = list_orb_reverse(h1)
! h2 = list_orb_reverse(h2) h2 =exc(2,1)
! p1 =exc(1,2) if(list_orb_reverse(h2).lt.0)return
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return h2 = list_orb_reverse(h2)
! p1 = list_orb_reverse(p1) p1 =exc(1,2)
! p2 =exc(2,2) if(list_orb_reverse(p1).lt.0)return
! if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return p1 = list_orb_reverse(p1)
! p2 = list_orb_reverse(p2) p2 =exc(2,2)
! if(alpha_alpha.or.spin_trace)then if(list_orb_reverse(p2).lt.0)return
! do istate = 1, N_states p2 = list_orb_reverse(p2)
! big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase if(alpha_alpha.or.spin_trace)then
! big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase nkeys += 1
! values(nkeys) = 0.5d0 * c_1 * phase
! big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase keys(1,nkeys) = h1
! big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase keys(2,nkeys) = h2
! enddo keys(3,nkeys) = p1
! endif keys(4,nkeys) = p2
! end
! subroutine orb_range_off_diagonal_double_to_two_rdm_bb_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin) nkeys += 1
! use bitmasks values(nkeys) = - 0.5d0 * c_1 * phase
! BEGIN_DOC keys(1,nkeys) = h1
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for keys(2,nkeys) = h2
!! keys(3,nkeys) = p2
!! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another keys(4,nkeys) = p1
!!
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1 nkeys += 1
!! values(nkeys) = 0.5d0 * c_1 * phase
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation keys(1,nkeys) = h2
!! keys(2,nkeys) = h1
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals keys(3,nkeys) = p2
!! keys(4,nkeys) = p1
!! ispin determines which spin-spin component of the two-rdm you will update
!! nkeys += 1
!! ispin == 1 :: alpha/ alpha values(nkeys) = - 0.5d0 * c_1 * phase
!! ispin == 2 :: beta / beta keys(1,nkeys) = h2
!! ispin == 3 :: alpha/ beta keys(2,nkeys) = h1
!! ispin == 4 :: spin traced <=> total two-rdm keys(3,nkeys) = p1
!! keys(4,nkeys) = p2
!! here, only ispin == 2 or 4 will do something endif
! END_DOC end
! implicit none
! subroutine orb_range_off_diag_double_to_two_rdm_bb_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
! integer, intent(in) :: dim1,ispin use bitmasks
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1) BEGIN_DOC
! integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int) ! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
! integer(bit_kind), intent(in) :: orb_bitmask(N_int) !
! integer, intent(in) :: list_orb_reverse(mo_num) ! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another
! double precision, intent(in) :: c_1 !
! ! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
! integer :: i,j,h1,h2,p1,p2,istate !
! integer :: exc(0:2,2) ! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
! double precision :: phase !
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace ! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
! logical :: is_integer_in_string !
! alpha_alpha = .False. ! ispin determines which spin-spin component of the two-rdm you will update
! beta_beta = .False. !
! alpha_beta = .False. ! ispin == 1 :: alpha/ alpha
! spin_trace = .False. ! ispin == 2 :: beta / beta
! if( ispin == 1)then ! ispin == 3 :: alpha/ beta
! alpha_alpha = .True. ! ispin == 4 :: spin traced <=> total two-rdm
! else if(ispin == 2)then !
! beta_beta = .True. ! here, only ispin == 2 or 4 will do something
! else if(ispin == 3)then END_DOC
! alpha_beta = .True. implicit none
! else if(ispin == 4)then
! spin_trace = .True. integer, intent(in) :: ispin,sze_buff
! endif integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
! integer, intent(in) :: list_orb_reverse(mo_num)
! call get_double_excitation_spin(det_1,det_2,exc,phase,N_int) double precision, intent(in) :: c_1
! h1 =exc(1,1) double precision, intent(out) :: values(sze_buff)
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return integer , intent(out) :: keys(4,sze_buff)
! h1 = list_orb_reverse(h1) integer , intent(inout):: nkeys
! h2 =exc(2,1)
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return integer :: i,j,h1,h2,p1,p2
! h2 = list_orb_reverse(h2) integer :: exc(0:2,2)
! p1 =exc(1,2) double precision :: phase
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
! p1 = list_orb_reverse(p1) logical :: is_integer_in_string
! p2 =exc(2,2) alpha_alpha = .False.
! if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return beta_beta = .False.
! p2 = list_orb_reverse(p2) alpha_beta = .False.
! if(beta_beta.or.spin_trace)then spin_trace = .False.
! big_array(h1,h2,p1,p2) += 0.5d0 * c_1* phase if( ispin == 1)then
! big_array(h1,h2,p2,p1) -= 0.5d0 * c_1* phase alpha_alpha = .True.
! else if(ispin == 2)then
! big_array(h2,h1,p2,p1) += 0.5d0 * c_1* phase beta_beta = .True.
! big_array(h2,h1,p1,p2) -= 0.5d0 * c_1* phase else if(ispin == 3)then
! endif alpha_beta = .True.
! end else if(ispin == 4)then
spin_trace = .True.
endif
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
h1 =exc(1,1)
if(list_orb_reverse(h1).lt.0)return
h1 = list_orb_reverse(h1)
h2 =exc(2,1)
if(list_orb_reverse(h2).lt.0)return
h2 = list_orb_reverse(h2)
p1 =exc(1,2)
if(list_orb_reverse(p1).lt.0)return
p1 = list_orb_reverse(p1)
p2 =exc(2,2)
if(list_orb_reverse(p2).lt.0)return
p2 = list_orb_reverse(p2)
if(beta_beta.or.spin_trace)then
nkeys += 1
values(nkeys) = 0.5d0 * c_1 * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = p2
nkeys += 1
values(nkeys) = - 0.5d0 * c_1 * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = 0.5d0 * c_1 * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = - 0.5d0 * c_1 * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p1
keys(4,nkeys) = p2
endif
end