9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-01 05:33:40 +02:00

Compare commits

..

No commits in common. "2ef517488c9038b641a4f3c95ca01cb2d38b7181" and "6531181316c131f30d54a3653d17b597c0a43f3b" have entirely different histories.

12 changed files with 525 additions and 225 deletions

View File

@ -1,6 +1,6 @@
! -*- F90 -*- ! -*- F90 -*-
BEGIN_PROVIDER [logical, bavard] BEGIN_PROVIDER [logical, bavard]
bavard=.true. bavard=.true.
! bavard=.false. bavard=.false.
END_PROVIDER END_PROVIDER

View File

@ -55,6 +55,7 @@
end do end do
end do end do
write(6,*) ' provided integrals (PQ|xx) '
END_PROVIDER END_PROVIDER
@ -115,6 +116,7 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_orb+n_act_orb,n_core_orb+n_a
end do end do
end do end do
end do end do
write(6,*) ' provided integrals (Px|xQ) '
END_PROVIDER END_PROVIDER
@ -144,5 +146,6 @@ BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
end do end do
end do end do
end do end do
write(6,*) ' provided integrals (tu|xP) '
END_PROVIDER END_PROVIDER

View File

@ -84,6 +84,7 @@
end do end do
end do end do
end do end do
write(6,*) ' transformed PQxx'
END_PROVIDER END_PROVIDER
@ -175,6 +176,7 @@ BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_orb+n_act_orb,n_core_orb+
end do end do
end do end do
end do end do
write(6,*) ' transformed PxxQ '
END_PROVIDER END_PROVIDER
@ -265,6 +267,7 @@ BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
end do end do
end do end do
end do end do
write(6,*) ' transformed tuvP '
END_PROVIDER END_PROVIDER

View File

@ -12,32 +12,24 @@ subroutine run
implicit none implicit none
double precision :: energy_old, energy double precision :: energy_old, energy
logical :: converged logical :: converged
integer :: iteration
converged = .False. converged = .False.
energy = 0.d0 energy = 0.d0
mo_label = "MCSCF" ! do while (.not.converged)
iteration = 1 N_det = 1
do while (.not.converged) TOUCH N_det psi_det psi_coef
call run_cipsi call run_cipsi
write(6,*) ' total energy = ',eone+etwo+ecore
mo_label = "MCSCF"
mo_label = "Natural"
mo_coef(:,:) = NatOrbsFCI(:,:)
call save_mos
call driver_optorb
energy_old = energy energy_old = energy
energy = eone+etwo+ecore energy = eone+etwo+ecore
converged = dabs(energy - energy_old) < 1.d-10
call write_time(6) ! enddo
call write_int(6,iteration,'CAS-SCF iteration')
call write_double(6,energy,'CAS-SCF energy')
call write_double(6,energy_improvement, 'Predicted energy improvement')
converged = dabs(energy_improvement) < thresh_scf
mo_coef = NewOrbs
call save_mos
call map_deinit(mo_integrals_map)
N_det = 1
iteration += 1
FREE mo_integrals_map mo_two_e_integrals_in_map psi_det psi_coef
SOFT_TOUCH mo_coef N_det
enddo
end end

View File

@ -1,19 +1,70 @@
use bitmasks use bitmasks
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ] BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
implicit none
BEGIN_DOC BEGIN_DOC
! the first-order density matrix in the basis of the starting MOs. ! the first-order density matrix in the basis of the starting MOs
! matrix is state averaged. ! matrices are state averaged
!
! we use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
!
END_DOC END_DOC
integer :: t,u implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
integer(bit_kind) :: det_mu(N_int,2)
integer(bit_kind) :: det_mu_ex(N_int,2)
integer(bit_kind) :: det_mu_ex1(N_int,2)
integer(bit_kind) :: det_mu_ex2(N_int,2)
real*8 :: phase1,phase2,term
integer :: nu1,nu2
integer :: ierr1,ierr2
real*8 :: cI_mu(N_states)
do u=1,n_act_orb write(6,*) ' providing density matrices D0 and P0 '
D0tu = 0.d0
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do t=1,n_act_orb do t=1,n_act_orb
D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + & ipart=list_act(t)
one_e_dm_mo_beta_average ( list_act(t), list_act(u) ) do u=1,n_act_orb
enddo ihole=list_act(u)
enddo ! apply E_tu
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! det_mu_ex1 is in the list
if (nu1.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
D0tu(t,u)+=term
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
D0tu(t,u)+=term
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
D0tu(v,x)*=1.0D0/dble(N_states)
end do
end do
END_PROVIDER END_PROVIDER
@ -39,9 +90,7 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12 integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22 integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
if (bavard) then write(6,*) ' providing density matrices D0 and P0 '
write(6,*) ' providing density matrix P0'
endif
P0tuvx = 0.d0 P0tuvx = 0.d0

View File

@ -31,8 +31,6 @@ subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
! get the number in the list ! get the number in the list
found=.false. found=.false.
nu=0 nu=0
!TODO BOTTLENECK
do while (.not.found) do while (.not.found)
nu+=1 nu+=1
if (nu.gt.N_det) then if (nu.gt.N_det) then
@ -52,6 +50,13 @@ subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
end do end do
end if end if
end do end do
! if (found) then
! if (nu.eq.-1) then
! write(6,*) ' image not found in the list, thus nu = ',nu
! else
! write(6,*) ' found in the list as No ',nu,' phase = ',phase
! end if
! end if
end if end if
! !
! we found the new string, the phase, and possibly the number in the list ! we found the new string, the phase, and possibly the number in the list

View File

@ -1,3 +1,32 @@
subroutine driver_optorb subroutine driver_optorb
implicit none implicit none
end integer :: i,j
write(6,*)
! write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
write(6,*) ' energy improvement = ',energy_improvement
! write(6,*) ' new energy = ',psi_energy_with_nucl_rep(1)+energy_improvement
write(6,*)
write(6,*)
write(6,*) ' creating new orbitals '
do i=1,mo_num
write(6,*) ' Orbital No ',i
write(6,'(5F14.6)') (NewOrbs(j,i),j=1,mo_num)
write(6,*)
end do
mo_label = "Natural"
do i=1,mo_num
do j=1,ao_num
mo_coef(j,i)=NewOrbs(j,i)
end do
end do
call save_mos
call map_deinit(mo_integrals_map)
FREE mo_integrals_map mo_coef mo_two_e_integrals_in_map
write(6,*)
write(6,*) ' ... all done '
end

View File

@ -6,6 +6,7 @@ BEGIN_PROVIDER [ integer, nMonoEx ]
END_DOC END_DOC
implicit none implicit none
nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb nMonoEx=n_core_orb*n_act_orb+n_core_orb*n_virt_orb+n_act_orb*n_virt_orb
write(6,*) ' nMonoEx = ',nMonoEx
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)] BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
@ -86,11 +87,9 @@ BEGIN_PROVIDER [real*8, gradvec, (nMonoEx)]
norm_grad+=gradvec(indx)*gradvec(indx) norm_grad+=gradvec(indx)*gradvec(indx)
end do end do
norm_grad=sqrt(norm_grad) norm_grad=sqrt(norm_grad)
if (bavard) then write(6,*)
write(6,*) write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad write(6,*)
write(6,*)
endif
END_PROVIDER END_PROVIDER
@ -119,11 +118,17 @@ subroutine calc_grad_elem(ihole,ipart,res)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu & call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr) ,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then if (ierr.eq.1) then
! write(6,*)
! write(6,*) ' mu = ',mu
! call print_det(det_mu,N_int)
! write(6,*) ' generated nu = ',nu,' for excitation ',ihole,' -> ',ipart,' ierr = ',ierr,' phase = ',phase,' ispin = ',ispin
! call print_det(det_mu_ex,N_int)
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int & call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array) ,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do end do
! write(6,*) ' contribution = ',i_H_psi_array(1)*psi_coef(mu,1)*phase,res
end if end if
end do end do
end do end do
@ -171,11 +176,9 @@ BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
norm_grad+=gradvec2(indx)*gradvec2(indx) norm_grad+=gradvec2(indx)*gradvec2(indx)
end do end do
norm_grad=sqrt(norm_grad) norm_grad=sqrt(norm_grad)
if (bavard) then write(6,*)
write(6,*) write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad write(6,*)
write(6,*)
endif
END_PROVIDER END_PROVIDER

View File

@ -14,10 +14,8 @@ BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
character*3 :: iexc,jexc character*3 :: iexc,jexc
real*8 :: res real*8 :: res
if (bavard) then write(6,*) ' providing Hessian matrix hessmat '
write(6,*) ' providing Hessian matrix hessmat ' write(6,*) ' nMonoEx = ',nMonoEx
write(6,*) ' nMonoEx = ',nMonoEx
endif
do indx=1,nMonoEx do indx=1,nMonoEx
do jndx=1,nMonoEx do jndx=1,nMonoEx
@ -34,6 +32,8 @@ BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
jpart=excit(2,jndx) jpart=excit(2,jndx)
jexc=excit_class(jndx) jexc=excit_class(jndx)
call calc_hess_elem(ihole,ipart,jhole,jpart,res) call calc_hess_elem(ihole,ipart,jhole,jpart,res)
! write(6,*) ' Hessian ',ihole,'->',ipart &
! ,' (',iexc,')',jhole,'->',jpart,' (',jexc,')',res
hessmat(indx,jndx)=res hessmat(indx,jndx)=res
hessmat(jndx,indx)=res hessmat(jndx,indx)=res
end do end do
@ -198,10 +198,8 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
real*8 :: hessmat_iatb real*8 :: hessmat_iatb
real*8 :: hessmat_taub real*8 :: hessmat_taub
if (bavard) then write(6,*) ' providing Hessian matrix hessmat2 '
write(6,*) ' providing Hessian matrix hessmat2 ' write(6,*) ' nMonoEx = ',nMonoEx
write(6,*) ' nMonoEx = ',nMonoEx
endif
indx=1 indx=1
do i=1,n_core_orb do i=1,n_core_orb
@ -216,6 +214,7 @@ BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
do u=ustart,n_act_orb do u=ustart,n_act_orb
hessmat2(indx,jndx)=hessmat_itju(i,t,j,u) hessmat2(indx,jndx)=hessmat_itju(i,t,j,u)
hessmat2(jndx,indx)=hessmat2(indx,jndx) hessmat2(jndx,indx)=hessmat2(indx,jndx)
! write(6,*) ' result I :',i,t,j,u,indx,jndx,hessmat(indx,jndx),hessmat2(indx,jndx)
jndx+=1 jndx+=1
end do end do
end do end do
@ -295,6 +294,7 @@ real*8 function hessmat_itju(i,t,j,u)
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
real*8 :: term,t2 real*8 :: term,t2
! write(6,*) ' hessmat_itju ',i,t,j,u
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
if (i.eq.j) then if (i.eq.j) then
@ -340,6 +340,8 @@ real*8 function hessmat_itju(i,t,j,u)
end do end do
end do end do
end do end do
!!! write(6,*) ' direct diff ',i,t,j,u,term,term2
!!! term=term2
end if end if
else else
! it/ju ! it/ju
@ -380,6 +382,7 @@ real*8 function hessmat_itja(i,t,j,a)
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itja ',i,t,j,a
! it/ja ! it/ja
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
@ -413,6 +416,7 @@ real*8 function hessmat_itua(i,t,u,a)
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3 integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_itua ',i,t,u,a
ii=list_core(i) ii=list_core(i)
tt=list_act(t) tt=list_act(t)
t3=t+n_core_orb t3=t+n_core_orb
@ -453,6 +457,7 @@ real*8 function hessmat_iajb(i,a,j,b)
implicit none implicit none
integer :: i,a,j,b,ii,aa,jj,bb integer :: i,a,j,b,ii,aa,jj,bb
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iajb ',i,a,j,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
@ -490,6 +495,7 @@ real*8 function hessmat_iatb(i,a,t,b)
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3 integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
real*8 :: term real*8 :: term
! write(6,*) ' hessmat_iatb ',i,a,t,b
ii=list_core(i) ii=list_core(i)
aa=list_virt(a) aa=list_virt(a)
tt=list_act(t) tt=list_act(t)
@ -546,6 +552,7 @@ real*8 function hessmat_taub(t,a,u,b)
end do end do
end do end do
term=t1+t2+t3 term=t1+t2+t3
! write(6,*) ' Hess taub ',t,a,t1,t2,t3
else else
bb=list_virt(b) bb=list_virt(b)
! ta/tb b/=a ! ta/tb b/=a

View File

@ -14,12 +14,10 @@
occnum(list_act(i))=occ_act(n_act_orb-i+1) occnum(list_act(i))=occ_act(n_act_orb-i+1)
end do end do
if (bavard) then write(6,*) ' occupation numbers '
write(6,*) ' occupation numbers ' do i=1,mo_num
do i=1,mo_num write(6,*) i,occnum(i)
write(6,*) i,occnum(i) end do
end do
endif
END_PROVIDER END_PROVIDER
@ -34,12 +32,14 @@ END_PROVIDER
call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb) call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
if (bavard) then write(6,*) ' found occupation numbers as '
write(6,*) ' found occupation numbers as ' do i=1,n_act_orb
do i=1,n_act_orb write(6,*) i,occ_act(i)
write(6,*) i,occ_act(i) end do
end do
if (bavard) then
!
integer :: nmx integer :: nmx
real*8 :: xmx real*8 :: xmx
do i=1,n_act_orb do i=1,n_act_orb
@ -152,6 +152,7 @@ BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
end do end do
end do end do
end do end do
write(6,*) ' transformed P0tuvx '
END_PROVIDER END_PROVIDER
@ -197,6 +198,7 @@ BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
one_ints_no(j,list_act(p))=d(p) one_ints_no(j,list_act(p))=d(p)
end do end do
end do end do
write(6,*) ' transformed one_ints '
END_PROVIDER END_PROVIDER
@ -224,5 +226,148 @@ BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
NatOrbsFCI(j,list_act(p))=d(p) NatOrbsFCI(j,list_act(p))=d(p)
end do end do
end do end do
write(6,*) ' transformed orbitals '
END_PROVIDER END_PROVIDER
subroutine trf_to_natorb()
implicit none
BEGIN_DOC
! save the diagonal somewhere, in inverse order
! 4-index-transform the 2-particle density matrix over active orbitals
! correct the bielectronic integrals
! correct the monoelectronic integrals
! put integrals on file, as well orbitals, and the density matrices
!
END_DOC
integer :: i,j,k,l,t,u,p,q,pp
real*8 :: d(n_act_orb),d1(n_act_orb),d2(n_act_orb)
! we recalculate total energies
write(6,*)
write(6,*) ' recalculating energies after the transformation '
write(6,*)
write(6,*)
real*8 :: e_one_all
real*8 :: e_two_all
integer :: ii
integer :: jj
integer :: t3
integer :: tt
integer :: u3
integer :: uu
integer :: v
integer :: v3
integer :: vv
integer :: x
integer :: x3
integer :: xx
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_orb
ii=list_core(i)
e_one_all+=2.D0*one_ints_no(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
e_two_all+=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
e_two_all += occnum(list_act(t)) * &
(2.d0*bielec_PQxx_no(tt,tt,i,i) - bielec_PQxx_no(tt,ii,i,t3))
end do
end do
do t=1,n_act_orb
tt=list_act(t)
e_one_all += occnum(list_act(t))*one_ints_no(tt,tt)
do u=1,n_act_orb
uu=list_act(u)
do v=1,n_act_orb
v3=v+n_core_orb
do x=1,n_act_orb
x3=x+n_core_orb
e_two_all +=P0tuvx_no(t,u,v,x)*bielec_PQxx_no(tt,uu,v3,x3)
end do
end do
end do
end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_orb
ii=list_core(i)
ecore +=2.D0*one_ints_no(ii,ii)
ecore_bis+=2.D0*one_ints_no(ii,ii)
do j=1,n_core_orb
jj=list_core(j)
ecore +=2.D0*bielec_PQxx_no(ii,ii,j,j)-bielec_PQxx_no(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ_no(ii,i,j,jj)-bielec_PxxQ_no(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_orb
eone += occnum(list_act(t))*one_ints_no(tt,tt)
eone_bis += occnum(list_act(t))*one_ints_no(tt,tt)
do i=1,n_core_orb
ii=list_core(i)
eone += occnum(list_act(t)) * &
(2.D0*bielec_PQxx_no(tt,tt,i,i ) - bielec_PQxx_no(tt,ii,i,t3))
eone_bis += occnum(list_act(t)) * &
(2.D0*bielec_PxxQ_no(tt,t3,i,ii) - bielec_PxxQ_no(tt,i ,i,tt))
end do
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_orb
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_orb
real*8 :: h1,h2,h3
h1=bielec_PQxx_no(tt,uu,v3,x3)
h2=bielec_PxxQ_no(tt,u3,v3,xx)
h3=bielecCI_no(t,u,v,xx)
etwo +=P0tuvx_no(t,u,v,x)*h1
etwo_bis+=P0tuvx_no(t,u,v,x)*h2
etwo_ter+=P0tuvx_no(t,u,v,x)*h3
if ((abs(h1-h2).gt.1.D-14).or.(abs(h1-h3).gt.1.D-14)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
SOFT_TOUCH ecore ecore_bis eone eone_bis etwo etwo_bis etwo_ter
end subroutine trf_to_natorb

View File

@ -1,178 +1,222 @@
! -*- F90 -*-
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)] BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
implicit none implicit none
BEGIN_DOC integer :: i,j
! Single-excitation matrix do i=1,nMonoEx+1
END_DOC do j=1,nMonoEx+1
SXmatrix(i,j)=0.D0
integer :: i,j end do
end do
do i=1,nMonoEx+1
do j=1,nMonoEx+1 do i=1,nMonoEx
SXmatrix(i,j)=0.D0 SXmatrix(1,i+1)=gradvec2(i)
end do SXmatrix(1+i,1)=gradvec2(i)
end do end do
do i=1,nMonoEx do i=1,nMonoEx
SXmatrix(1,i+1)=gradvec2(i) do j=1,nMonoEx
SXmatrix(1+i,1)=gradvec2(i) SXmatrix(i+1,j+1)=hessmat2(i,j)
end do SXmatrix(j+1,i+1)=hessmat2(i,j)
end do
do i=1,nMonoEx end do
do j=1,nMonoEx
SXmatrix(i+1,j+1)=hessmat2(i,j) if (bavard) then
SXmatrix(j+1,i+1)=hessmat2(i,j) do i=2,nMonoEx+1
end do write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
end do end do
end if
if (bavard) then
do i=2,nMonoEx+1
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
end do
end if
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)] BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)] &BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
implicit none END_PROVIDER
BEGIN_DOC
! Eigenvectors/eigenvalues of the single-excitation matrix
END_DOC
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
END_PROVIDER
BEGIN_PROVIDER [real*8, SXvector, (nMonoEx+1)] BEGIN_PROVIDER [real*8, SXvector, (nMonoEx+1)]
&BEGIN_PROVIDER [real*8, energy_improvement] &BEGIN_PROVIDER [real*8, energy_improvement]
implicit none implicit none
BEGIN_DOC integer :: ierr,matz,i
! Best eigenvector of the single-excitation matrix real*8 :: c0
END_DOC
integer :: ierr,matz,i
real*8 :: c0
if (bavard) then
write(6,*) ' SXdiag : lowest 5 eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
energy_improvement = SXeigenval(1)
integer :: best_vector
real*8 :: best_overlap
best_overlap=0.D0
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
best_overlap=abs(SXeigenvec(1,i))
best_vector=i
end if
end if
end do
energy_improvement = SXeigenval(best_vector)
if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
write(6,*) ' weight of the 1st element ',c0
endif
c0=SXeigenvec(1,best_vector) call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
write(6,*) ' SXdiag : lowest 5 eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
energy_improvement = SXeigenval(1)
do i=1,nMonoEx+1 integer :: best_vector
SXvector(i)=SXeigenvec(i,best_vector)/c0 real*8 :: best_overlap
end do best_overlap=0.D0
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
best_overlap=abs(SXeigenvec(1,i))
best_vector=i
end if
end if
end do
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
energy_improvement = SXeigenval(best_vector)
c0=SXeigenvec(1,best_vector)
write(6,*) ' weight of the 1st element ',c0
do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector)/c0
! write(6,*) ' component No ',i,' : ',SXvector(i)
end do
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, NewOrbs, (ao_num,mo_num) ] BEGIN_PROVIDER [real*8, NewOrbs, (ao_num,mo_num) ]
implicit none implicit none
BEGIN_DOC integer :: i,j,ialph
! Updated orbitals
END_DOC ! form the exponential of the Orbital rotations
integer :: i,j,ialph call get_orbrotmat
! form the new orbitals
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, & do i=1,ao_num
NatOrbsFCI, size(NatOrbsFCI,1), & do j=1,mo_num
Umat, size(Umat,1), 0.d0, & NewOrbs(i,j)=0.D0
NewOrbs, size(NewOrbs,1)) end do
end do
do ialph=1,ao_num
do i=1,mo_num
wrkline(i)=mo_coef(ialph,i)
end do
do i=1,mo_num
do j=1,mo_num
NewOrbs(ialph,i)+=Umat(i,j)*wrkline(j)
end do
end do
end do
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ] BEGIN_PROVIDER [real*8, Tpotmat, (mo_num,mo_num) ]
implicit none &BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
BEGIN_DOC &BEGIN_PROVIDER [real*8, wrkline, (mo_num) ]
! Orbital rotation matrix &BEGIN_PROVIDER [real*8, Tmat, (mo_num,mo_num) ]
END_DOC END_PROVIDER
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
logical :: converged subroutine get_orbrotmat
implicit none
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num) integer :: i,j,indx,k,iter,t,a,ii,tt,aa
real*8 :: Tmat(mo_num,mo_num) real*8 :: sum
real*8 :: f logical :: converged
! the orbital rotation matrix T
Tmat(:,:)=0.D0 ! the orbital rotation matrix T
indx=1 do i=1,mo_num
do i=1,n_core_orb do j=1,mo_num
ii=list_core(i) Tmat(i,j)=0.D0
do t=1,n_act_orb Umat(i,j)=0.D0
tt=list_act(t) Tpotmat(i,j)=0.D0
indx+=1 end do
Tmat(ii,tt)= SXvector(indx) Tpotmat(i,i)=1.D0
Tmat(tt,ii)=-SXvector(indx) end do
end do
end do indx=1
do i=1,n_core_orb do i=1,n_core_orb
ii=list_core(i) ii=list_core(i)
do a=1,n_virt_orb do t=1,n_act_orb
aa=list_virt(a) tt=list_act(t)
indx+=1 indx+=1
Tmat(ii,aa)= SXvector(indx) Tmat(ii,tt)= SXvector(indx)
Tmat(aa,ii)=-SXvector(indx) Tmat(tt,ii)=-SXvector(indx)
end do end do
end do end do
do t=1,n_act_orb do i=1,n_core_orb
tt=list_act(t) ii=list_core(i)
do a=1,n_virt_orb do a=1,n_virt_orb
aa=list_virt(a) aa=list_virt(a)
indx+=1 indx+=1
Tmat(tt,aa)= SXvector(indx) Tmat(ii,aa)= SXvector(indx)
Tmat(aa,tt)=-SXvector(indx) Tmat(aa,ii)=-SXvector(indx)
end do end do
end do end do
do t=1,n_act_orb
! Form the exponential tt=list_act(t)
do a=1,n_virt_orb
Tpotmat(:,:)=0.D0 aa=list_virt(a)
Umat(:,:) =0.D0 indx+=1
do i=1,mo_num Tmat(tt,aa)= SXvector(indx)
Tpotmat(i,i)=1.D0 Tmat(aa,tt)=-SXvector(indx)
Umat(i,i) =1.d0 end do
end do end do
iter=0
converged=.false. write(6,*) ' the T matrix '
do while (.not.converged) do indx=1,nMonoEx
iter+=1 i=excit(1,indx)
f = 1.d0 / dble(iter) j=excit(2,indx)
Tpotmat2(:,:) = Tpotmat(:,:) * f ! if (abs(Tmat(i,j)).gt.1.D0) then
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, & ! write(6,*) ' setting matrix element ',i,j,' of ',Tmat(i,j),' to ' &
Tpotmat2, size(Tpotmat2,1), & ! , sign(1.D0,Tmat(i,j))
Tmat, size(Tmat,1), 0.d0, & ! Tmat(i,j)=sign(1.D0,Tmat(i,j))
Tpotmat, size(Tpotmat,1)) ! Tmat(j,i)=-Tmat(i,j)
Umat(:,:) = Umat(:,:) + Tpotmat(:,:) ! end if
if (abs(Tmat(i,j)).gt.1.D-9) write(6,9901) i,j,excit_class(indx),Tmat(i,j)
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30) 9901 format(' ',i4,' -> ',i4,' (',A3,') : ',E14.6)
end do end do
write(6,*)
write(6,*) ' forming the matrix exponential '
write(6,*)
! form the exponential
iter=0
converged=.false.
do while (.not.converged)
iter+=1
! add the next term
do i=1,mo_num
do j=1,mo_num
Umat(i,j)+=Tpotmat(i,j)
end do
end do
! next power of T, we multiply Tpotmat with Tmat/iter
do i=1,mo_num
do j=1,mo_num
wrkline(j)=Tpotmat(i,j)/dble(iter)
Tpotmat(i,j)=0.D0
end do
do j=1,mo_num
do k=1,mo_num
Tpotmat(i,j)+=wrkline(k)*Tmat(k,j)
end do
end do
end do
! Convergence test
sum=0.D0
do i=1,mo_num
do j=1,mo_num
sum+=abs(Tpotmat(i,j))
end do
end do
write(6,*) ' Iteration No ',iter,' Sum = ',sum
if (sum.lt.1.D-6) then
converged=.true.
end if
if (iter.ge.NItExpMax) then
stop ' no convergence '
end if
end do
write(6,*)
write(6,*) ' Converged ! '
write(6,*)
end subroutine get_orbrotmat
BEGIN_PROVIDER [integer, NItExpMax]
NItExpMax=100
END_PROVIDER END_PROVIDER

View File

@ -42,6 +42,8 @@
end do end do
end do end do
end do end do
write(6,*) ' e_one_all = ',e_one_all
write(6,*) ' e_two_all = ',e_two_all
ecore =nuclear_repulsion ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion ecore_bis=nuclear_repulsion
do i=1,n_core_orb do i=1,n_core_orb
@ -96,6 +98,24 @@
end do end do
end do end do
write(6,*) ' energy contributions '
write(6,*) ' core energy = ',ecore,' using PQxx integrals '
write(6,*) ' core energy (bis) = ',ecore,' using PxxQ integrals '
write(6,*) ' 1el energy = ',eone ,' using PQxx integrals '
write(6,*) ' 1el energy (bis) = ',eone ,' using PxxQ integrals '
write(6,*) ' 2el energy = ',etwo ,' using PQxx integrals '
write(6,*) ' 2el energy (bis) = ',etwo_bis,' using PxxQ integrals '
write(6,*) ' 2el energy (ter) = ',etwo_ter,' using tuvP integrals '
write(6,*) ' ----------------------------------------- '
write(6,*) ' sum of all = ',eone+etwo+ecore
write(6,*)
write(6,*) ' nuclear (qp) = ',nuclear_repulsion
write(6,*) ' core energy (qp) = ',core_energy
write(6,*) ' 1el energy (qp) = ',psi_energy_h_core(1)
write(6,*) ' 2el energy (qp) = ',psi_energy_two_e(1)
write(6,*) ' nuc + 1 + 2 (qp) = ',nuclear_repulsion+psi_energy_h_core(1)+psi_energy_two_e(1)
write(6,*) ' <0|H|0> (qp) = ',psi_energy_with_nucl_rep(1)
END_PROVIDER END_PROVIDER