mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 11:03:29 +01:00
working on S2 for TC: davidson with S2 penalty seems to work
This commit is contained in:
parent
042159a134
commit
fbe8c4b60f
547
src/tc_bi_ortho/dav_h_tc_s2.irp.f
Normal file
547
src/tc_bi_ortho/dav_h_tc_s2.irp.f
Normal file
@ -0,0 +1,547 @@
|
||||
|
||||
! ---
|
||||
|
||||
subroutine davidson_hs2_nonsym_b1space(u_in, H_jj, energies, sze, N_st, N_st_diag_in, converged, hcalc)
|
||||
|
||||
use mmap_module
|
||||
|
||||
BEGIN_DOC
|
||||
! Generic modified-Davidson diagonalization
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit by right eigenvectors
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > N_st
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: sze, N_st, N_st_diag_in
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
logical, intent(inout) :: converged
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
external hcalc
|
||||
|
||||
character*(16384) :: write_buffer
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i, j, k, l, m
|
||||
integer :: iter2, itertot
|
||||
logical :: disk_based
|
||||
integer :: shift, shift2, itermax
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
double precision :: to_print(3,N_st)
|
||||
double precision :: r1, r2, alpha
|
||||
double precision :: cpu, wall
|
||||
double precision :: cmax
|
||||
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||
double precision, allocatable :: U(:,:)
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:), h_p(:,:), s2(:)
|
||||
real, allocatable :: y_s(:,:)
|
||||
double precision, allocatable :: s_(:,:), s_tmp(:,:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
|
||||
double precision :: lambda_tmp
|
||||
integer, allocatable :: i_omax(:)
|
||||
double precision, allocatable :: U_tmp(:), overlap(:), S_d(:,:)
|
||||
|
||||
double precision, allocatable :: W(:,:)
|
||||
real, pointer :: S(:,:)
|
||||
|
||||
!double precision, pointer :: W(:,:)
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
! print*,'trial vector'
|
||||
do i = 1, sze
|
||||
if(isnan(u_in(i,1)))then
|
||||
print*,'pb in input vector of davidson_general_ext_rout_nonsym_b1space'
|
||||
print*,i,u_in(i,1)
|
||||
stop
|
||||
else if (dabs(u_in(i,1)).lt.1.d-16)then
|
||||
u_in(i,1) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, y_s, S_d, h, lambda
|
||||
|
||||
if(N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2, min(davidson_sze_max, sze/N_st_diag)) + 1
|
||||
|
||||
provide threshold_nonsym_davidson
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = sze
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.5d0*dble(sze*m)*(N_st_diag*itermax) &! W, S
|
||||
+ 4.5d0*(N_st_diag*itermax)**2 &! h,y,y_s,s_, s_tmp
|
||||
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_S2_u_0_nstates_zmq
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if(nproc_target == 0) then
|
||||
call check_mem(r1, irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if(r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if(itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
! else if (m==1.and.disk_based_davidson) then
|
||||
! m = 0
|
||||
! disk_based = .True.
|
||||
! itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
|
||||
call write_int(6, N_st, 'Number of states')
|
||||
call write_int(6, N_st_diag, 'Number of states in diagonalization')
|
||||
call write_int(6, sze, 'Number of basis functions')
|
||||
call write_int(6, nproc_target, 'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if(disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ =========== ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy S^2 Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ =========== ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
allocate( W(sze,N_st_diag*itermax), S(sze,N_st_diag*itermax) )
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
S_d(sze,N_st_diag), &
|
||||
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
h_p(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
s_(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
lambda(N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
i_omax(N_st), &
|
||||
s2(N_st_diag*itermax), &
|
||||
y_s(N_st_diag*itermax,N_st_diag*itermax) &
|
||||
)
|
||||
|
||||
U = 0.d0
|
||||
h = 0.d0
|
||||
y = 0.d0
|
||||
s_ = 0.d0
|
||||
s_tmp = 0.d0
|
||||
|
||||
lambda = 0.d0
|
||||
residual_norm = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
! Initialize from N_st to N_st_diag with gaussian random numbers
|
||||
! to be sure to have overlap with any eigenvectors
|
||||
do k = N_st+1, N_st_diag
|
||||
u_in(k,k) = 10.d0
|
||||
do i = 1, sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2)
|
||||
enddo
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k = 1, N_st_diag
|
||||
call normalize(u_in(1,k), sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! ---
|
||||
|
||||
itertot = 0
|
||||
|
||||
do while (.not.converged)
|
||||
|
||||
itertot = itertot + 1
|
||||
if(itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter = 1, itermax-1
|
||||
|
||||
shift = N_st_diag * (iter-1)
|
||||
shift2 = N_st_diag * iter
|
||||
|
||||
if( (iter > 1) .or. (itertot == 1) ) then
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
call ortho_qr(U, size(U, 1), sze, shift2)
|
||||
|
||||
! W = H U
|
||||
! call hcalc(W(1,shift+1), U(1,shift+1), N_st_diag, sze)
|
||||
call hcalc(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
|
||||
S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
|
||||
else
|
||||
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
! Compute s_kl = <u_k | S_l> = <u_k| S2 |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k) COLLAPSE(2)
|
||||
do j=1,shift2
|
||||
do i=1,shift2
|
||||
s_(i,j) = 0.d0
|
||||
do k=1,sze
|
||||
s_(i,j) = s_(i,j) + U(k,i) * dble(S(k,j))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
call dgemm( 'T', 'N', shift2, shift2, sze, 1.d0 &
|
||||
, U, size(U, 1), W, size(W, 1) &
|
||||
, 0.d0, h, size(h, 1) )
|
||||
! Penalty method
|
||||
! --------------
|
||||
|
||||
if (s2_eig) then
|
||||
h_p = s_
|
||||
do k=1,shift2
|
||||
h_p(k,k) = h_p(k,k) - expected_s2
|
||||
enddo
|
||||
if (only_expected_s2) then
|
||||
alpha = 0.1d0
|
||||
h_p = h + alpha*h_p
|
||||
else
|
||||
alpha = 0.0001d0
|
||||
h_p = h + alpha*h_p
|
||||
endif
|
||||
else
|
||||
h_p = h
|
||||
alpha = 0.d0
|
||||
endif
|
||||
|
||||
! Diagonalize h y = lambda y
|
||||
! ---------------------------
|
||||
call diag_nonsym_right(shift2, h_p(1,1), size(h_p, 1), y(1,1), size(y, 1), lambda(1), size(lambda, 1))
|
||||
|
||||
do k = 1, N_st_diag
|
||||
! print*,'lambda(k) before = ',lambda(k)
|
||||
lambda(k) = 0.d0
|
||||
do l = 1, shift2
|
||||
do m = 1, shift2
|
||||
lambda(k) += y(m,k) * h(m,l) * y(l,k)
|
||||
enddo
|
||||
enddo
|
||||
! print*,'lambda(k) new = ',lambda(k)
|
||||
enddo
|
||||
! Compute S2 for each eigenvector
|
||||
! -------------------------------
|
||||
|
||||
call dgemm('N','N',shift2,shift2,shift2, &
|
||||
1.d0, s_, size(s_,1), y, size(y,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('T','N',shift2,shift2,shift2, &
|
||||
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
|
||||
0.d0, s_, size(s_,1))
|
||||
|
||||
do k=1,shift2
|
||||
s2(k) = s_(k,k)
|
||||
enddo
|
||||
|
||||
! Express eigenvectors of h in the determinant basis:
|
||||
! ---------------------------------------------------
|
||||
|
||||
! y(:,k) = rk
|
||||
! U(:,k) = Bk
|
||||
! U(:,shift2+k) = Rk = Bk x rk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, U(1,shift2+1), size(U, 1) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
call normalize(U(1,shift2+k), sze)
|
||||
enddo
|
||||
|
||||
! ---
|
||||
! select the max overlap
|
||||
|
||||
!
|
||||
! start test ------------------------------------------------------------------------
|
||||
!
|
||||
!double precision, allocatable :: Utest(:,:), Otest(:)
|
||||
!allocate( Utest(sze,shift2), Otest(shift2) )
|
||||
|
||||
!call dgemm( 'N', 'N', sze, shift2, shift2, 1.d0 &
|
||||
! , U, size(U, 1), y, size(y, 1), 0.d0, Utest(1,1), size(Utest, 1) )
|
||||
!do k = 1, shift2
|
||||
! call normalize(Utest(1,k), sze)
|
||||
!enddo
|
||||
!do j = 1, sze
|
||||
! write(455, '(100(1X, F16.10))') (Utest(j,k), k=1,shift2)
|
||||
!enddo
|
||||
|
||||
!do k = 1, shift2
|
||||
! Otest(k) = 0.d0
|
||||
! do i = 1, sze
|
||||
! Otest(k) += Utest(i,k) * u_in(i,1)
|
||||
! enddo
|
||||
! Otest(k) = dabs(Otest(k))
|
||||
! print *, ' Otest =', k, Otest(k), lambda(k)
|
||||
!enddo
|
||||
|
||||
!deallocate(Utest, Otest)
|
||||
!
|
||||
! end test ------------------------------------------------------------------------
|
||||
!
|
||||
|
||||
! TODO
|
||||
! state_following is more efficient
|
||||
do l = 1, N_st
|
||||
|
||||
allocate( overlap(N_st_diag) )
|
||||
|
||||
do k = 1, N_st_diag
|
||||
overlap(k) = 0.d0
|
||||
do i = 1, sze
|
||||
overlap(k) = overlap(k) + U(i,shift2+k) * u_in(i,l)
|
||||
enddo
|
||||
overlap(k) = dabs(overlap(k))
|
||||
!print *, ' overlap =', k, overlap(k)
|
||||
enddo
|
||||
|
||||
lambda_tmp = 0.d0
|
||||
do k = 1, N_st_diag
|
||||
if(overlap(k) .gt. lambda_tmp) then
|
||||
i_omax(l) = k
|
||||
lambda_tmp = overlap(k)
|
||||
endif
|
||||
enddo
|
||||
|
||||
deallocate(overlap)
|
||||
|
||||
if(lambda_tmp .lt. 0.7d0) then
|
||||
print *, ' very small overlap ...', l, i_omax(l)
|
||||
print *, ' max overlap = ', lambda_tmp
|
||||
stop
|
||||
endif
|
||||
|
||||
if(i_omax(l) .ne. l) then
|
||||
print *, ' !!! WARNONG !!!'
|
||||
print *, ' index of state', l, i_omax(l)
|
||||
endif
|
||||
enddo
|
||||
|
||||
! y(:,k) = rk
|
||||
! W(:,k) = H x Bk
|
||||
! W(:,shift2+k) = H x Bk x rk
|
||||
! = Wk
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, W(1,shift2+1), size(W, 1) )
|
||||
|
||||
! ---
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,shift2+k) = (lambda(k) * U(i,shift2+k) - W(i,shift2+k)) / max(H_jj(i)-lambda(k), 1.d-2)
|
||||
enddo
|
||||
if(k <= N_st) then
|
||||
l = k
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+l), sze)
|
||||
to_print(1,k) = lambda(l)
|
||||
to_print(2,k) = s2(l)
|
||||
to_print(3,k) = residual_norm(l)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!residual_norm(1) = u_dot_u(U(1,shift2+1), sze)
|
||||
!to_print(1,1) = lambda(1)
|
||||
!to_print(2,1) = residual_norm(1)
|
||||
|
||||
|
||||
if( (itertot > 1) .and. (iter == 1) ) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*, '(1X, I3, 1X, 100(1X, F16.10, 1X, F16.10, 1X, F16.10))') iter-1, to_print(1:3,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if(iter > 1) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_nonsym_davidson
|
||||
endif
|
||||
|
||||
do k = 1, N_st
|
||||
if(residual_norm(k) > 1.e8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if(converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if(qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
enddo ! loop over iter
|
||||
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, W, size(W, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm( 'N', 'N', sze, N_st_diag, shift2, 1.d0 &
|
||||
, U, size(U, 1), y, size(y, 1) &
|
||||
, 0.d0, u_in, size(u_in, 1) )
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
call ortho_qr(U, size(U, 1), sze, N_st_diag)
|
||||
do j = 1, N_st_diag
|
||||
k = 1
|
||||
do while( (k < sze) .and. (U(k,j) == 0.d0) )
|
||||
k = k+1
|
||||
enddo
|
||||
if(U(k,j) * u_in(k,j) < 0.d0) then
|
||||
do i = 1, sze
|
||||
W(i,j) = -W(i,j)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
|
||||
enddo ! loop over while
|
||||
|
||||
! ---
|
||||
|
||||
do k = 1, N_st
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '====='
|
||||
do i = 1, N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
deallocate(U, h, y, lambda, residual_norm, i_omax)
|
||||
|
||||
FREE nthreads_davidson
|
||||
|
||||
end subroutine davidson_general_ext_rout_nonsym_b1space
|
||||
|
||||
! ---
|
157
src/tc_bi_ortho/test_s2_tc.irp.f
Normal file
157
src/tc_bi_ortho/test_s2_tc.irp.f
Normal file
@ -0,0 +1,157 @@
|
||||
program test_tc
|
||||
implicit none
|
||||
read_wf = .True.
|
||||
my_grid_becke = .True.
|
||||
my_n_pt_r_grid = 30
|
||||
my_n_pt_a_grid = 50
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||
call routine_test_s2
|
||||
call routine_test_s2_davidson
|
||||
end
|
||||
|
||||
subroutine routine_test_s2
|
||||
implicit none
|
||||
logical :: do_right
|
||||
integer :: sze ,i, N_st, j
|
||||
double precision :: sij, accu_e, accu_s, accu_e_0, accu_s_0
|
||||
double precision, allocatable :: v_0_ref(:,:),u_0(:,:),s_0_ref(:,:)
|
||||
double precision, allocatable :: v_0_new(:,:),s_0_new(:,:)
|
||||
sze = N_det
|
||||
N_st = 1
|
||||
allocate(v_0_ref(N_det,1),u_0(N_det,1),s_0_ref(N_det,1),s_0_new(N_det,1),v_0_new(N_det,1))
|
||||
print*,'Checking first the Left '
|
||||
do_right = .False.
|
||||
do i = 1, sze
|
||||
u_0(i,1) = psi_l_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
call H_tc_u_0_nstates_openmp(v_0_ref,u_0,N_st,sze, do_right)
|
||||
s_0_ref = 0.d0
|
||||
do i = 1, sze
|
||||
do j = 1, sze
|
||||
call get_s2(psi_det(1,1,i),psi_det(1,1,j),N_int,sij)
|
||||
s_0_ref(i,1) += u_0(j,1) * sij
|
||||
enddo
|
||||
enddo
|
||||
call H_tc_s2_u_0_nstates_openmp(v_0_new,s_0_new,u_0,N_st,sze, do_right)
|
||||
accu_e = 0.d0
|
||||
accu_s = 0.d0
|
||||
accu_e_0 = 0.d0
|
||||
accu_s_0 = 0.d0
|
||||
do i = 1, sze
|
||||
accu_e_0 += v_0_ref(i,1) * psi_r_coef_bi_ortho(i,1)
|
||||
accu_s_0 += s_0_ref(i,1) * psi_r_coef_bi_ortho(i,1)
|
||||
accu_e += dabs(v_0_ref(i,1) - v_0_new(i,1))
|
||||
accu_s += dabs(s_0_ref(i,1) - s_0_new(i,1))
|
||||
enddo
|
||||
print*,'accu_e = ',accu_e
|
||||
print*,'accu_s = ',accu_s
|
||||
print*,'accu_e_0 = ',accu_e_0
|
||||
print*,'accu_s_0 = ',accu_s_0
|
||||
|
||||
print*,'Checking then the right '
|
||||
do_right = .True.
|
||||
do i = 1, sze
|
||||
u_0(i,1) = psi_r_coef_bi_ortho(i,1)
|
||||
enddo
|
||||
call H_tc_u_0_nstates_openmp(v_0_ref,u_0,N_st,sze, do_right)
|
||||
s_0_ref = 0.d0
|
||||
do i = 1, sze
|
||||
do j = 1, sze
|
||||
call get_s2(psi_det(1,1,i),psi_det(1,1,j),N_int,sij)
|
||||
s_0_ref(i,1) += u_0(j,1) * sij
|
||||
enddo
|
||||
enddo
|
||||
call H_tc_s2_u_0_nstates_openmp(v_0_new,s_0_new,u_0,N_st,sze, do_right)
|
||||
accu_e = 0.d0
|
||||
accu_s = 0.d0
|
||||
accu_e_0 = 0.d0
|
||||
accu_s_0 = 0.d0
|
||||
do i = 1, sze
|
||||
accu_e_0 += v_0_ref(i,1) * psi_l_coef_bi_ortho(i,1)
|
||||
accu_s_0 += s_0_ref(i,1) * psi_l_coef_bi_ortho(i,1)
|
||||
accu_e += dabs(v_0_ref(i,1) - v_0_new(i,1))
|
||||
accu_s += dabs(s_0_ref(i,1) - s_0_new(i,1))
|
||||
enddo
|
||||
print*,'accu_e = ',accu_e
|
||||
print*,'accu_s = ',accu_s
|
||||
print*,'accu_e_0 = ',accu_e_0
|
||||
print*,'accu_s_0 = ',accu_s_0
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine routine_test_s2_davidson
|
||||
implicit none
|
||||
double precision, allocatable :: H_jj(:),vec_tmp(:,:), energies(:)
|
||||
integer :: i,istate
|
||||
logical :: converged
|
||||
external H_tc_s2_dagger_u_0_opt
|
||||
external H_tc_s2_u_0_opt
|
||||
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag),energies(n_states_diag))
|
||||
do i = 1, N_det
|
||||
call htilde_mu_mat_bi_ortho_tot(psi_det(1,1,i), psi_det(1,1,i), N_int, H_jj(i))
|
||||
enddo
|
||||
! Preparing the left-eigenvector
|
||||
print*,'Computing the left-eigenvector '
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(1:N_det,istate) = psi_l_coef_bi_ortho(1:N_det,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
do istate = 1, N_states
|
||||
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
enddo
|
||||
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, energies, N_det, n_states, n_states_diag, converged, H_tc_s2_dagger_u_0_opt)
|
||||
print*,'energies = ',energies
|
||||
double precision, allocatable :: v_0_new(:,:),s_0_new(:,:)
|
||||
integer :: sze,N_st
|
||||
logical :: do_right
|
||||
sze = N_det
|
||||
N_st = 1
|
||||
do_right = .False.
|
||||
allocate(s_0_new(N_det,1),v_0_new(N_det,1))
|
||||
call H_tc_s2_u_0_nstates_openmp(v_0_new,s_0_new,vec_tmp,N_st,sze, do_right)
|
||||
double precision :: accu_e_0, accu_s_0
|
||||
accu_e_0 = 0.d0
|
||||
accu_s_0 = 0.d0
|
||||
do i = 1, sze
|
||||
accu_e_0 += v_0_new(i,1) * vec_tmp(i,1)
|
||||
accu_s_0 += s_0_new(i,1) * vec_tmp(i,1)
|
||||
enddo
|
||||
print*,'accu_e_0',accu_e_0
|
||||
print*,'accu_s_0',accu_s_0
|
||||
|
||||
! Preparing the right-eigenvector
|
||||
print*,'Computing the right-eigenvector '
|
||||
vec_tmp = 0.d0
|
||||
do istate = 1, N_states
|
||||
vec_tmp(1:N_det,istate) = psi_r_coef_bi_ortho(1:N_det,istate)
|
||||
enddo
|
||||
do istate = N_states+1, n_states_diag
|
||||
vec_tmp(istate,istate) = 1.d0
|
||||
enddo
|
||||
do istate = 1, N_states
|
||||
leigvec_tc_bi_orth(1:N_det,istate) = vec_tmp(1:N_det,istate)
|
||||
enddo
|
||||
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, energies, N_det, n_states, n_states_diag, converged, H_tc_s2_u_0_opt)
|
||||
print*,'energies = ',energies
|
||||
sze = N_det
|
||||
N_st = 1
|
||||
do_right = .True.
|
||||
v_0_new = 0.d0
|
||||
s_0_new = 0.d0
|
||||
call H_tc_s2_u_0_nstates_openmp(v_0_new,s_0_new,vec_tmp,N_st,sze, do_right)
|
||||
accu_e_0 = 0.d0
|
||||
accu_s_0 = 0.d0
|
||||
do i = 1, sze
|
||||
accu_e_0 += v_0_new(i,1) * vec_tmp(i,1)
|
||||
accu_s_0 += s_0_new(i,1) * vec_tmp(i,1)
|
||||
enddo
|
||||
print*,'accu_e_0',accu_e_0
|
||||
print*,'accu_s_0',accu_s_0
|
||||
|
||||
end
|
Loading…
Reference in New Issue
Block a user