mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 00:55:38 +01:00
Improving weights
This commit is contained in:
parent
3d6a75ca42
commit
fb07e986c9
@ -352,9 +352,9 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
|||||||
|
|
||||||
state_average_weight(:) = state_average_weight_save(:)
|
state_average_weight(:) = state_average_weight_save(:)
|
||||||
TOUCH state_average_weight
|
TOUCH state_average_weight
|
||||||
|
call update_pt2_and_variance_weights(pt2_data, N_states)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
call update_pt2_and_variance_weights(pt2_data, N_states)
|
|
||||||
|
|
||||||
end subroutine
|
end subroutine
|
||||||
|
|
||||||
|
@ -33,43 +33,59 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
|||||||
|
|
||||||
double precision :: avg, element, dt, x
|
double precision :: avg, element, dt, x
|
||||||
integer :: k
|
integer :: k
|
||||||
integer, save :: i_iter=0
|
! integer, save :: i_iter=0
|
||||||
integer, parameter :: i_itermax = 1
|
! integer, parameter :: i_itermax = 1
|
||||||
double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:)
|
! double precision, allocatable, save :: memo_variance(:,:), memo_pt2(:,:)
|
||||||
|
|
||||||
pt2(:) = pt2_data % pt2(:)
|
pt2(:) = pt2_data % pt2(:)
|
||||||
variance(:) = pt2_data % variance(:)
|
variance(:) = pt2_data % variance(:)
|
||||||
|
|
||||||
if (i_iter == 0) then
|
! if (i_iter == 0) then
|
||||||
allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax))
|
! allocate(memo_variance(N_st,i_itermax), memo_pt2(N_st,i_itermax))
|
||||||
memo_pt2(:,:) = 1.d0
|
! memo_pt2(:,:) = 1.d0
|
||||||
memo_variance(:,:) = 1.d0
|
! memo_variance(:,:) = 1.d0
|
||||||
endif
|
! endif
|
||||||
|
!
|
||||||
|
! i_iter = i_iter+1
|
||||||
|
! if (i_iter > i_itermax) then
|
||||||
|
! i_iter = 1
|
||||||
|
! endif
|
||||||
|
!
|
||||||
|
! dt = 2.0d0
|
||||||
|
|
||||||
i_iter = i_iter+1
|
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||||
if (i_iter > i_itermax) then
|
! do k=1,N_st
|
||||||
i_iter = 1
|
! element = exp(dt*(pt2(k)/avg -1.d0))
|
||||||
endif
|
! element = min(2.0d0 , element)
|
||||||
|
! element = max(0.5d0 , element)
|
||||||
|
! memo_pt2(k,i_iter) = element
|
||||||
|
! pt2_match_weight(k) *= product(memo_pt2(k,:))
|
||||||
|
!enddo
|
||||||
|
|
||||||
dt = 2.0d0
|
dt = 1.0d0 * selection_factor
|
||||||
|
|
||||||
avg = sum(pt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero
|
|
||||||
do k=1,N_st
|
do k=1,N_st
|
||||||
element = exp(dt*(pt2(k)/avg - 1.d0))
|
element = exp(dt*(pt2(k)/avg - 1.d0))
|
||||||
element = min(2.0d0 , element)
|
element = min(2.0d0 , element)
|
||||||
element = max(0.5d0 , element)
|
element = max(0.5d0 , element)
|
||||||
memo_pt2(k,i_iter) = element
|
print *, k, element
|
||||||
pt2_match_weight(k) *= product(memo_pt2(k,:))
|
pt2_match_weight(k) *= element
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
|
||||||
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||||
|
! do k=1,N_st
|
||||||
|
! element = exp(dt*(variance(k)/avg -1.d0))
|
||||||
|
! element = min(2.0d0 , element)
|
||||||
|
! element = max(0.5d0 , element)
|
||||||
|
! memo_variance(k,i_iter) = element
|
||||||
|
! variance_match_weight(k) *= product(memo_variance(k,:))
|
||||||
|
! enddo
|
||||||
|
|
||||||
do k=1,N_st
|
do k=1,N_st
|
||||||
element = exp(dt*(variance(k)/avg -1.d0))
|
element = exp(dt*(variance(k)/avg -1.d0))
|
||||||
element = min(2.0d0 , element)
|
element = min(2.0d0 , element)
|
||||||
element = max(0.5d0 , element)
|
element = max(0.5d0 , element)
|
||||||
memo_variance(k,i_iter) = element
|
variance_match_weight(k) *= element
|
||||||
variance_match_weight(k) *= product(memo_variance(k,:))
|
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
if (N_det < 100) then
|
if (N_det < 100) then
|
||||||
@ -78,6 +94,8 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
|||||||
variance_match_weight(:) = 1.d0
|
variance_match_weight(:) = 1.d0
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
print *, 'XXX', n_det, pt2_match_weight(1), pt2_match_weight(2)
|
||||||
|
|
||||||
threshold_davidson_pt2 = min(1.d-6, &
|
threshold_davidson_pt2 = min(1.d-6, &
|
||||||
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
|
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user