9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-30 15:15:38 +01:00

Refactor CIPSI / TC-CIPSI

This commit is contained in:
Anthony Scemama 2024-03-12 17:21:35 +01:00
parent 9a15fecd6a
commit f816773102
26 changed files with 1303 additions and 2300 deletions

View File

@ -15,37 +15,5 @@ BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
pt2_E0_denominator = eigval_right_tc_bi_orth
! if (initialize_pt2_E0_denominator) then
! if (h0_type == "EN") then
! pt2_E0_denominator(1:N_states) = psi_energy(1:N_states)
! else if (h0_type == "HF") then
! do i=1,N_states
! j = maxloc(abs(psi_coef(:,i)),1)
! pt2_E0_denominator(i) = psi_det_hii(j)
! enddo
! else if (h0_type == "Barycentric") then
! pt2_E0_denominator(1:N_states) = barycentric_electronic_energy(1:N_states)
! else if (h0_type == "CFG") then
! pt2_E0_denominator(1:N_states) = psi_energy(1:N_states)
! else
! print *, h0_type, ' not implemented'
! stop
! endif
! do i=1,N_states
! call write_double(6,pt2_E0_denominator(i)+nuclear_repulsion, 'PT2 Energy denominator')
! enddo
! else
! pt2_E0_denominator = -huge(1.d0)
! endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_overlap, (N_states, N_states) ]
implicit none
BEGIN_DOC
! Overlap between the perturbed wave functions
END_DOC
pt2_overlap(1:N_states,1:N_states) = 0.d0
END_PROVIDER

View File

@ -1,14 +0,0 @@
BEGIN_PROVIDER [ integer, nthreads_pt2 ]
implicit none
BEGIN_DOC
! Number of threads for Davidson
END_DOC
nthreads_pt2 = nproc
character*(32) :: env
call getenv('QP_NTHREADS_PT2',env)
if (trim(env) /= '') then
read(env,*) nthreads_pt2
call write_int(6,nthreads_pt2,'Target number of threads for PT2')
endif
END_PROVIDER

View File

@ -1,546 +0,0 @@
use omp_lib
use selection_types
use f77_zmq
BEGIN_PROVIDER [ integer(omp_lock_kind), global_selection_buffer_lock ]
use omp_lib
implicit none
BEGIN_DOC
! Global buffer for the OpenMP selection
END_DOC
call omp_init_lock(global_selection_buffer_lock)
END_PROVIDER
BEGIN_PROVIDER [ type(selection_buffer), global_selection_buffer ]
use omp_lib
implicit none
BEGIN_DOC
! Global buffer for the OpenMP selection
END_DOC
call omp_set_lock(global_selection_buffer_lock)
call delete_selection_buffer(global_selection_buffer)
call create_selection_buffer(N_det_generators, 2*N_det_generators, &
global_selection_buffer)
call omp_unset_lock(global_selection_buffer_lock)
END_PROVIDER
subroutine run_pt2_slave(thread,iproc,energy)
use selection_types
use f77_zmq
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
call run_pt2_slave_large(thread,iproc,energy)
! if (N_det > 100000 ) then
! call run_pt2_slave_large(thread,iproc,energy)
! else
! call run_pt2_slave_small(thread,iproc,energy)
! endif
end
subroutine run_pt2_slave_small(thread,iproc,energy)
use selection_types
use f77_zmq
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, ctask, ltask
character*(512), allocatable :: task(:)
integer, allocatable :: task_id(:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: b
logical :: done, buffer_ready
type(pt2_type), allocatable :: pt2_data(:)
integer :: n_tasks, k, N
integer, allocatable :: i_generator(:), subset(:)
double precision, external :: memory_of_double, memory_of_int
integer :: bsize ! Size of selection buffers
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
allocate(pt2_data(pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
b%N = 0
buffer_ready = .False.
n_tasks = 1
done = .False.
do while (.not.done)
n_tasks = max(1,n_tasks)
n_tasks = min(pt2_n_tasks_max,n_tasks)
integer, external :: get_tasks_from_taskserver
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
exit
endif
done = task_id(n_tasks) == 0
if (done) then
n_tasks = n_tasks-1
endif
if (n_tasks == 0) exit
do k=1,n_tasks
call sscanf_ddd(task(k), subset(k), i_generator(k), N)
enddo
if (b%N == 0) then
! Only first time
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
call create_selection_buffer(bsize, bsize*2, b)
buffer_ready = .True.
else
ASSERT (b%N == bsize)
endif
double precision :: time0, time1
call wall_time(time0)
do k=1,n_tasks
call pt2_alloc(pt2_data(k),N_states)
b%cur = 0
call select_connected(i_generator(k),energy,pt2_data(k),b,subset(k),pt2_F(i_generator(k)))
enddo
call wall_time(time1)
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
done = .true.
endif
call sort_selection_buffer(b)
call push_pt2_results(zmq_socket_push, i_generator, pt2_data, b, task_id, n_tasks)
do k=1,n_tasks
call pt2_dealloc(pt2_data(k))
enddo
b%cur=0
! ! Try to adjust n_tasks around nproc/2 seconds per job
n_tasks = min(2*n_tasks,int( dble(n_tasks * nproc/2) / (time1 - time0 + 1.d0)))
n_tasks = min(n_tasks, pt2_n_tasks_max)
! n_tasks = 1
end do
integer, external :: disconnect_from_taskserver
do i=1,300
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) /= -2) exit
call usleep(500)
print *, 'Retry disconnect...'
end do
call end_zmq_push_socket(zmq_socket_push,thread)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
if (buffer_ready) then
call delete_selection_buffer(b)
endif
deallocate(pt2_data)
end subroutine
subroutine run_pt2_slave_large(thread,iproc,energy)
use selection_types
use f77_zmq
implicit none
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, ctask, ltask
character*(512) :: task
integer :: task_id(1)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: b
logical :: done, buffer_ready
type(pt2_type) :: pt2_data
integer :: n_tasks, k, N
integer :: i_generator, subset
integer :: ifirst
integer :: bsize ! Size of selection buffers
logical :: sending
PROVIDE global_selection_buffer global_selection_buffer_lock
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
ifirst = 0
b%N = 0
buffer_ready = .False.
n_tasks = 1
sending = .False.
done = .False.
do while (.not.done)
integer, external :: get_tasks_from_taskserver
if (get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id, task, n_tasks) == -1) then
exit
endif
done = task_id(1) == 0
if (done) then
n_tasks = n_tasks-1
endif
if (n_tasks == 0) exit
call sscanf_ddd(task, subset, i_generator, N)
if( pt2_F(i_generator) <= 0 .or. pt2_F(i_generator) > N_det ) then
print *, irp_here
stop 'bug in selection'
endif
if (b%N == 0) then
! Only first time
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
call create_selection_buffer(bsize, bsize*2, b)
buffer_ready = .True.
else
ASSERT (b%N == bsize)
endif
double precision :: time0, time1
call wall_time(time0)
call pt2_alloc(pt2_data,N_states)
b%cur = 0
call select_connected(i_generator,energy,pt2_data,b,subset,pt2_F(i_generator))
call wall_time(time1)
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
done = .true.
endif
call sort_selection_buffer(b)
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
call omp_set_lock(global_selection_buffer_lock)
global_selection_buffer%mini = b%mini
call merge_selection_buffers(b,global_selection_buffer)
if (ifirst /= 0 ) then
b%cur=0
else
ifirst = 1
endif
call omp_unset_lock(global_selection_buffer_lock)
if ( iproc == 1 ) then
call omp_set_lock(global_selection_buffer_lock)
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), global_selection_buffer, (/task_id/), 1,sending)
global_selection_buffer%cur = 0
call omp_unset_lock(global_selection_buffer_lock)
else
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), b, (/task_id/), 1,sending)
endif
call pt2_dealloc(pt2_data)
end do
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
integer, external :: disconnect_from_taskserver
do i=1,300
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) /= -2) exit
call sleep(1)
print *, 'Retry disconnect...'
end do
call end_zmq_push_socket(zmq_socket_push,thread)
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
if (buffer_ready) then
call delete_selection_buffer(b)
endif
FREE global_selection_buffer
end subroutine
subroutine push_pt2_results(zmq_socket_push, index, pt2_data, b, task_id, n_tasks)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data(n_tasks)
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
type(selection_buffer), intent(inout) :: b
logical :: sending
sending = .False.
call push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
call push_pt2_results_async_recv(zmq_socket_push, b%mini, sending)
end subroutine
subroutine push_pt2_results_async_send(zmq_socket_push, index, pt2_data, b, task_id, n_tasks, sending)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data(n_tasks)
integer, intent(in) :: n_tasks, index(n_tasks), task_id(n_tasks)
type(selection_buffer), intent(inout) :: b
logical, intent(inout) :: sending
integer :: rc, i
integer*8 :: rc8
double precision, allocatable :: pt2_serialized(:,:)
if (sending) then
print *, irp_here, ': sending is true'
stop -1
endif
sending = .True.
rc = f77_zmq_send( zmq_socket_push, n_tasks, 4, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 1
return
else if(rc /= 4) then
stop 'push'
endif
rc = f77_zmq_send( zmq_socket_push, index, 4*n_tasks, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 2
return
else if(rc /= 4*n_tasks) then
stop 'push'
endif
allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
do i=1,n_tasks
call pt2_serialize(pt2_data(i),N_states,pt2_serialized(1,i))
enddo
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
deallocate(pt2_serialized)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 3
return
else if(rc /= size(pt2_serialized)*8) then
stop 'push'
endif
rc = f77_zmq_send( zmq_socket_push, task_id, n_tasks*4, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 6
return
else if(rc /= 4*n_tasks) then
stop 'push'
endif
if (b%cur == 0) then
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, 0)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 7
return
else if(rc /= 4) then
stop 'push'
endif
else
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 7
return
else if(rc /= 4) then
stop 'push'
endif
rc8 = f77_zmq_send8( zmq_socket_push, b%val, 8_8*int(b%cur,8), ZMQ_SNDMORE)
if (rc8 == -1_8) then
print *, irp_here, ': error sending result'
stop 8
return
else if(rc8 /= 8_8*int(b%cur,8)) then
stop 'push'
endif
rc8 = f77_zmq_send8( zmq_socket_push, b%det, int(bit_kind*N_int*2,8)*int(b%cur,8), 0)
if (rc8 == -1_8) then
print *, irp_here, ': error sending result'
stop 9
return
else if(rc8 /= int(N_int*2*8,8)*int(b%cur,8)) then
stop 'push'
endif
endif
end subroutine
subroutine push_pt2_results_async_recv(zmq_socket_push,mini,sending)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
double precision, intent(out) :: mini
logical, intent(inout) :: sending
integer :: rc
if (.not.sending) return
! Activate is zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
character*(2) :: ok
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 10
return
else if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
print *, irp_here//': error in receiving ok'
stop -1
endif
rc = f77_zmq_recv( zmq_socket_push, mini, 8, 0)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 11
return
else if (rc /= 8) then
print *, irp_here//': error in receiving mini'
stop 12
endif
IRP_ENDIF
sending = .False.
end subroutine
subroutine pull_pt2_results(zmq_socket_pull, index, pt2_data, task_id, n_tasks, b)
use selection_types
use f77_zmq
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(pt2_type), intent(inout) :: pt2_data(*)
type(selection_buffer), intent(inout) :: b
integer, intent(out) :: index(*)
integer, intent(out) :: n_tasks, task_id(*)
integer :: rc, rn, i
integer*8 :: rc8
double precision, allocatable :: pt2_serialized(:,:)
rc = f77_zmq_recv( zmq_socket_pull, n_tasks, 4, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4) then
stop 'pull'
endif
rc = f77_zmq_recv( zmq_socket_pull, index, 4*n_tasks, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4*n_tasks) then
stop 'pull'
endif
allocate(pt2_serialized (pt2_type_size(N_states),n_tasks) )
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized)*n_tasks, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 8*size(pt2_serialized)) then
stop 'pull'
endif
do i=1,n_tasks
call pt2_deserialize(pt2_data(i),N_states,pt2_serialized(1,i))
enddo
deallocate(pt2_serialized)
rc = f77_zmq_recv( zmq_socket_pull, task_id, n_tasks*4, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4*n_tasks) then
stop 'pull'
endif
rc = f77_zmq_recv( zmq_socket_pull, b%cur, 4, 0)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if(rc /= 4) then
stop 'pull'
endif
if (b%cur > 0) then
rc8 = f77_zmq_recv8( zmq_socket_pull, b%val, 8_8*int(b%cur,8), 0)
if (rc8 == -1_8) then
n_tasks = 1
task_id(1) = 0
else if(rc8 /= 8_8*int(b%cur,8)) then
stop 'pull'
endif
rc8 = f77_zmq_recv8( zmq_socket_pull, b%det, int(bit_kind*N_int*2,8)*int(b%cur,8), 0)
if (rc8 == -1_8) then
n_tasks = 1
task_id(1) = 0
else if(rc8 /= int(N_int*2*8,8)*int(b%cur,8)) then
stop 'pull'
endif
endif
! Activate is zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, ZMQ_SNDMORE)
if (rc == -1) then
n_tasks = 1
task_id(1) = 0
else if (rc /= 2) then
print *, irp_here//': error in sending ok'
stop -1
endif
rc = f77_zmq_send( zmq_socket_pull, b%mini, 8, 0)
IRP_ENDIF
end subroutine

View File

@ -1,258 +1,5 @@
subroutine run_selection_slave(thread, iproc, energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done, buffer_ready
type(pt2_type) :: pt2_data
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym
PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc weight_selection
call pt2_alloc(pt2_data,N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
buf%N = 0
buffer_ready = .False.
ctask = 1
do
integer, external :: get_task_from_taskserver
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task) == -1) then
exit
endif
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, N, subset, bsize
call sscanf_ddd(task, subset, i_generator, N)
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
buffer_ready = .True.
else
if (N /= buf%N) then
print *, 'N=', N
print *, 'buf%N=', buf%N
print *, 'bug in ', irp_here
stop '-1'
end if
end if
call select_connected(i_generator, energy, pt2_data, buf, subset, pt2_F(i_generator))
endif
integer, external :: task_done_to_taskserver
if(done .or. ctask == size(task_id)) then
do i=1, ctask
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
call usleep(100)
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
ctask = 0
done = .true.
exit
endif
endif
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
call pt2_dealloc(pt2_data)
call pt2_alloc(pt2_data,N_states)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
call pt2_dealloc(pt2_data)
integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
continue
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
if (buffer_ready) then
call delete_selection_buffer(buf)
! call delete_selection_buffer(buf2)
endif
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2_data, b, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntasks, task_id(*)
integer :: rc
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
call pt2_serialize(pt2_data,N_states,pt2_serialized)
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 3
return
else if(rc /= size(pt2_serialized)*8) then
stop 'push'
endif
deallocate(pt2_serialized)
if (b%cur > 0) then
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)'
endif
endif
rc = f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
character*(2) :: ok
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
print *, irp_here//': error in receiving ok'
stop -1
endif
IRP_ENDIF
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2_data, val, det, N, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(pt2_type), intent(inout) :: pt2_data
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntasks, task_id(*)
integer :: rc, rn, i
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, N, 4, 0)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized), 0)
if (rc == -1) then
ntasks = 1
task_id(1) = 0
else if(rc /= 8*size(pt2_serialized)) then
stop 'pull'
endif
call pt2_deserialize(pt2_data,N_states,pt2_serialized)
deallocate(pt2_serialized)
if (N>0) then
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)'
endif
endif
rc = f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, 0)
if (rc /= 2) then
print *, irp_here//': error in sending ok'
stop -1
endif
IRP_ENDIF
end subroutine
subroutine provide_for_selection_slave
PROVIDE psi_det_sorted_tc_order
PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc
end

View File

@ -76,6 +76,8 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
double precision, allocatable :: fock_diag_tmp(:,:)
if (csubset == 0) return
allocate(fock_diag_tmp(2,mo_num+1))
call build_fock_tmp_tc(fock_diag_tmp, psi_det_generators(1,1,i_generator), N_int)
@ -86,10 +88,13 @@ subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo
if ((subset == 1).and.(sum(hole_mask(:,2)) == 0_bit_kind)) then
! No beta electron to excite
call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b)
endif
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
deallocate(fock_diag_tmp)
end subroutine select_connected
end subroutine
double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
@ -136,7 +141,7 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
end
subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset)
subroutine select_singles_and_doubles(i_generator, hole_mask, particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset)
use bitmasks
use selection_types
implicit none
@ -151,8 +156,6 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
double precision, parameter :: norm_thr = 1.d-16
integer :: h1, h2, s1, s2, s3, i1, i2, ib, sp, k, i, j, nt, ii, sze
integer :: maskInd
integer :: N_holes(2), N_particles(2)
@ -170,6 +173,7 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
integer, allocatable :: preinteresting(:), prefullinteresting(:)
integer, allocatable :: interesting(:), fullinteresting(:)
integer, allocatable :: tmp_array(:)
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
@ -178,15 +182,16 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order psi_bilinear_matrix_transp_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp_tc
PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc_order
PROVIDE banned_excitation
monoAdo = .true.
monoBdo = .true.
if (csubset == 0) return
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
@ -198,7 +203,11 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
allocate( indices(N_det), exc_degree( max(N_det_alpha_unique, N_det_beta_unique) ) )
! Removed to avoid introducing determinants already presents in the wf
!double precision, parameter :: norm_thr = 1.d-16
allocate (indices(N_det), &
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
! Pre-compute excitation degrees wrt alpha determinants
k=1
@ -214,73 +223,76 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
if (nt > 2) cycle
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
i = psi_bilinear_matrix_rows(l_a)
if(nt + exc_degree(i) <= 4) then
if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_tc_order(psi_bilinear_matrix_order(l_a))
! if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
! Removed to avoid introducing determinants already presents in the wf
!if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx
k = k + 1
! endif
k=k+1
!endif
endif
enddo
enddo
! Pre-compute excitation degrees wrt beta determinants
do i=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,i), psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
call get_excitation_degree_spin(psi_det_beta_unique(1,i), &
psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
enddo
! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4
! Remove also contributions < 1.d-20)
do j=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), psi_det_generators(1,1,i_generator), nt, N_int)
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
psi_det_generators(1,1,i_generator), nt, N_int)
if (nt > 1) cycle
do l_a = psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
i = psi_bilinear_matrix_transp_columns(l_a)
if(exc_degree(i) < 3) cycle
if(nt + exc_degree(i) <= 4) then
if (exc_degree(i) < 3) cycle
if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_tc_order( &
psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a)))
! if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
! Removed to avoid introducing determinants already presents in the wf
!if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx
k = k + 1
! endif
k=k+1
!endif
endif
enddo
enddo
deallocate(exc_degree)
nmax = k - 1
nmax=k-1
call isort_noidx(indices,nmax)
! Start with 32 elements. Size will double along with the filtering.
allocate(preinteresting(0:32), prefullinteresting(0:32), interesting(0:32), fullinteresting(0:32))
allocate(preinteresting(0:32), prefullinteresting(0:32), &
interesting(0:32), fullinteresting(0:32))
preinteresting(:) = 0
prefullinteresting(:) = 0
do i = 1, N_int
do i=1,N_int
negMask(i,1) = not(psi_det_generators(i,1,i_generator))
negMask(i,2) = not(psi_det_generators(i,2,i_generator))
enddo
do k = 1, nmax
end do
do k=1,nmax
i = indices(k)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
do j = 2, N_int
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted_tc(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted_tc(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
enddo
end do
if(nt <= 4) then
if(i <= N_det_selectors) then
sze = preinteresting(0)
if(sze+1 == size(preinteresting)) then
allocate(tmp_array(0:sze))
if (sze+1 == size(preinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = preinteresting(0:sze)
deallocate(preinteresting)
allocate(preinteresting(0:2*sze))
@ -289,9 +301,9 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif
preinteresting(0) = sze+1
preinteresting(sze+1) = i
elseif(nt <= 2) then
else if(nt <= 2) then
sze = prefullinteresting(0)
if(sze+1 == size(prefullinteresting)) then
if (sze+1 == size(prefullinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = prefullinteresting(0:sze)
deallocate(prefullinteresting)
@ -301,20 +313,16 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif
prefullinteresting(0) = sze+1
prefullinteresting(sze+1) = i
endif
endif
enddo
end if
end if
end do
deallocate(indices)
allocate( banned(mo_num, mo_num,2), bannedOrb(mo_num, 2) )
allocate( mat(N_states, mo_num, mo_num) )
allocate( mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num) )
allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2))
allocate(mat(N_states, mo_num, mo_num))
allocate(mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num))
maskInd = -1
do s1 = 1, 2
do i1 = N_holes(s1), 1, -1 ! Generate low excitations first
@ -347,17 +355,17 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
do ii = 1, preinteresting(0)
i = preinteresting(ii)
select case(N_int)
case(1)
select case (N_int)
case (1)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
case(2)
case (2)
mobMask(1:2,1) = iand(negMask(1:2,1), psi_det_sorted_tc(1:2,1,i))
mobMask(1:2,2) = iand(negMask(1:2,2), psi_det_sorted_tc(1:2,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + &
popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2))
case(3)
case (3)
mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted_tc(1:3,1,i))
mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted_tc(1:3,2,i))
nt = 0
@ -370,8 +378,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
enddo
case(4)
end do
case (4)
mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted_tc(1:4,1,i))
mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted_tc(1:4,2,i))
nt = 0
@ -384,7 +392,7 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
enddo
end do
case default
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted_tc(1:N_int,1,i))
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted_tc(1:N_int,2,i))
@ -398,12 +406,12 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
enddo
end do
end select
if(nt <= 4) then
sze = interesting(0)
if(sze+1 == size(interesting)) then
if (sze+1 == size(interesting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = interesting(0:sze)
deallocate(interesting)
@ -425,8 +433,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif
fullinteresting(0) = sze+1
fullinteresting(sze+1) = i
endif
endif
end if
end if
enddo
@ -456,9 +464,9 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
endif
fullinteresting(0) = sze+1
fullinteresting(sze+1) = i
endif
enddo
allocate( fullminilist (N_int, 2, fullinteresting(0)), &
end if
end do
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) )
do i = 1, fullinteresting(0)
@ -517,7 +525,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting, mat_l, mat_r)
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, mat_l, mat_r)
endif
end if
enddo
@ -533,7 +542,8 @@ subroutine select_singles_and_doubles(i_generator, hole_mask,particle_mask, fock
deallocate(banned, bannedOrb,mat)
deallocate(mat_l, mat_r)
end subroutine select_singles_and_doubles
end subroutine
! ---

View File

@ -1,424 +0,0 @@
subroutine create_selection_buffer(N, size_in, res)
use selection_types
implicit none
BEGIN_DOC
! Allocates the memory for a selection buffer.
! The arrays have dimension size_in and the maximum number of elements is N
END_DOC
integer, intent(in) :: N, size_in
type(selection_buffer), intent(out) :: res
integer :: siz
siz = max(size_in,1)
double precision :: rss
double precision, external :: memory_of_double
rss = memory_of_double(siz)*(N_int*2+1)
call check_mem(rss,irp_here)
allocate(res%det(N_int, 2, siz), res%val(siz))
res%val(:) = 0d0
res%det(:,:,:) = 0_8
res%N = N
res%mini = 0d0
res%cur = 0
end subroutine
subroutine delete_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
if (associated(b%det)) then
deallocate(b%det)
endif
if (associated(b%val)) then
deallocate(b%val)
endif
NULLIFY(b%det)
NULLIFY(b%val)
b%cur = 0
b%mini = 0.d0
b%N = 0
end
subroutine add_to_selection_buffer(b, det, val)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer(bit_kind), intent(in) :: det(N_int, 2)
double precision, intent(in) :: val
integer :: i
if(b%N > 0 .and. val <= b%mini) then
b%cur += 1
b%det(1:N_int,1:2,b%cur) = det(1:N_int,1:2)
b%val(b%cur) = val
if(b%cur == size(b%val)) then
call sort_selection_buffer(b)
end if
end if
end subroutine
subroutine merge_selection_buffers(b1, b2)
use selection_types
implicit none
BEGIN_DOC
! Merges the selection buffers b1 and b2 into b2
END_DOC
type(selection_buffer), intent(inout) :: b1
type(selection_buffer), intent(inout) :: b2
integer(bit_kind), pointer :: detmp(:,:,:)
double precision, pointer :: val(:)
integer :: i, i1, i2, k, nmwen, sze
if (b1%cur == 0) return
do while (b1%val(b1%cur) > b2%mini)
b1%cur = b1%cur-1
if (b1%cur == 0) then
return
endif
enddo
nmwen = min(b1%N, b1%cur+b2%cur)
double precision :: rss
double precision, external :: memory_of_double
sze = max(size(b1%val), size(b2%val))
rss = memory_of_double(sze) + 2*N_int*memory_of_double(sze)
call check_mem(rss,irp_here)
allocate(val(sze), detmp(N_int, 2, sze))
i1=1
i2=1
do i=1,nmwen
if ( (i1 > b1%cur).and.(i2 > b2%cur) ) then
exit
else if (i1 > b1%cur) then
val(i) = b2%val(i2)
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
i2=i2+1
else if (i2 > b2%cur) then
val(i) = b1%val(i1)
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
i1=i1+1
else
if (b1%val(i1) <= b2%val(i2)) then
val(i) = b1%val(i1)
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
i1=i1+1
else
val(i) = b2%val(i2)
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
i2=i2+1
endif
endif
enddo
deallocate(b2%det, b2%val)
do i=nmwen+1,b2%N
val(i) = 0.d0
detmp(1:N_int,1:2,i) = 0_bit_kind
enddo
b2%det => detmp
b2%val => val
! if(selection_tc == 1)then
! b2%mini = max(b2%mini,b2%val(b2%N))
! else
b2%mini = min(b2%mini,b2%val(b2%N))
! endif
b2%cur = nmwen
end
subroutine sort_selection_buffer(b)
use selection_types
implicit none
type(selection_buffer), intent(inout) :: b
integer, allocatable :: iorder(:)
integer(bit_kind), pointer :: detmp(:,:,:)
integer :: i, nmwen
logical, external :: detEq
if (b%N == 0 .or. b%cur == 0) return
nmwen = min(b%N, b%cur)
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_int(b%cur) + 2*N_int*memory_of_double(size(b%det,3))
call check_mem(rss,irp_here)
allocate(iorder(b%cur), detmp(N_int, 2, size(b%det,3)))
do i=1,b%cur
iorder(i) = i
end do
call dsort(b%val, iorder, b%cur)
do i=1, nmwen
detmp(1:N_int,1,i) = b%det(1:N_int,1,iorder(i))
detmp(1:N_int,2,i) = b%det(1:N_int,2,iorder(i))
end do
deallocate(b%det,iorder)
b%det => detmp
! if(selection_tc == 1)then
! b%mini = max(b%mini,b%val(b%N))
! else
b%mini = min(b%mini,b%val(b%N))
! endif
b%cur = nmwen
end subroutine
subroutine make_selection_buffer_s2(b)
use selection_types
type(selection_buffer), intent(inout) :: b
integer(bit_kind), allocatable :: o(:,:,:)
double precision, allocatable :: val(:)
integer :: n_d
integer :: i,k,sze,n_alpha,j,n
logical :: dup
! Sort
integer, allocatable :: iorder(:)
integer*8, allocatable :: bit_tmp(:)
integer*8, external :: configuration_search_key
integer(bit_kind), allocatable :: tmp_array(:,:,:)
logical, allocatable :: duplicate(:)
n_d = b%cur
double precision :: rss
double precision, external :: memory_of_double
rss = (4*N_int+4)*memory_of_double(n_d)
call check_mem(rss,irp_here)
allocate(o(N_int,2,n_d), iorder(n_d), duplicate(n_d), bit_tmp(n_d), &
tmp_array(N_int,2,n_d), val(n_d) )
do i=1,n_d
do k=1,N_int
o(k,1,i) = ieor(b%det(k,1,i), b%det(k,2,i))
o(k,2,i) = iand(b%det(k,1,i), b%det(k,2,i))
enddo
iorder(i) = i
bit_tmp(i) = configuration_search_key(o(1,1,i),N_int)
enddo
deallocate(b%det)
call i8sort(bit_tmp,iorder,n_d)
do i=1,n_d
do k=1,N_int
tmp_array(k,1,i) = o(k,1,iorder(i))
tmp_array(k,2,i) = o(k,2,iorder(i))
enddo
val(i) = b%val(iorder(i))
duplicate(i) = .False.
enddo
! Find duplicates
do i=1,n_d-1
if (duplicate(i)) then
cycle
endif
j = i+1
do while (bit_tmp(j)==bit_tmp(i))
if (duplicate(j)) then
j+=1
if (j>n_d) then
exit
endif
cycle
endif
dup = .True.
do k=1,N_int
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
dup = .False.
exit
endif
enddo
if (dup) then
val(i) = max(val(i), val(j))
duplicate(j) = .True.
endif
j+=1
if (j>n_d) then
exit
endif
enddo
enddo
deallocate (b%val)
! Copy filtered result
integer :: n_p
n_p=0
do i=1,n_d
if (duplicate(i)) then
cycle
endif
n_p = n_p + 1
do k=1,N_int
o(k,1,n_p) = tmp_array(k,1,i)
o(k,2,n_p) = tmp_array(k,2,i)
enddo
val(n_p) = val(i)
enddo
! Sort by importance
do i=1,n_p
iorder(i) = i
end do
call dsort(val,iorder,n_p)
do i=1,n_p
do k=1,N_int
tmp_array(k,1,i) = o(k,1,iorder(i))
tmp_array(k,2,i) = o(k,2,iorder(i))
enddo
enddo
do i=1,n_p
do k=1,N_int
o(k,1,i) = tmp_array(k,1,i)
o(k,2,i) = tmp_array(k,2,i)
enddo
enddo
! Create determinants
n_d = 0
do i=1,n_p
call configuration_to_dets_size(o(1,1,i),sze,elec_alpha_num,N_int)
n_d = n_d + sze
if (n_d > b%cur) then
! if (n_d - b%cur > b%cur - n_d + sze) then
! n_d = n_d - sze
! endif
exit
endif
enddo
rss = (4*N_int+2)*memory_of_double(n_d)
call check_mem(rss,irp_here)
allocate(b%det(N_int,2,2*n_d), b%val(2*n_d))
k=1
do i=1,n_p
n=n_d
call configuration_to_dets_size(o(1,1,i),n,elec_alpha_num,N_int)
call configuration_to_dets(o(1,1,i),b%det(1,1,k),n,elec_alpha_num,N_int)
do j=k,k+n-1
b%val(j) = val(i)
enddo
k = k+n
if (k > n_d) exit
enddo
deallocate(o)
b%cur = n_d
b%N = n_d
end
subroutine remove_duplicates_in_selection_buffer(b)
use selection_types
type(selection_buffer), intent(inout) :: b
integer(bit_kind), allocatable :: o(:,:,:)
double precision, allocatable :: val(:)
integer :: n_d
integer :: i,k,sze,n_alpha,j,n
logical :: dup
! Sort
integer, allocatable :: iorder(:)
integer*8, allocatable :: bit_tmp(:)
integer*8, external :: det_search_key
integer(bit_kind), allocatable :: tmp_array(:,:,:)
logical, allocatable :: duplicate(:)
n_d = b%cur
logical :: found_duplicates
double precision :: rss
double precision, external :: memory_of_double
rss = (4*N_int+4)*memory_of_double(n_d)
call check_mem(rss,irp_here)
found_duplicates = .False.
allocate(iorder(n_d), duplicate(n_d), bit_tmp(n_d), &
tmp_array(N_int,2,n_d), val(n_d) )
do i=1,n_d
iorder(i) = i
bit_tmp(i) = det_search_key(b%det(1,1,i),N_int)
enddo
call i8sort(bit_tmp,iorder,n_d)
do i=1,n_d
do k=1,N_int
tmp_array(k,1,i) = b%det(k,1,iorder(i))
tmp_array(k,2,i) = b%det(k,2,iorder(i))
enddo
val(i) = b%val(iorder(i))
duplicate(i) = .False.
enddo
! Find duplicates
do i=1,n_d-1
if (duplicate(i)) then
cycle
endif
j = i+1
do while (bit_tmp(j)==bit_tmp(i))
if (duplicate(j)) then
j+=1
if (j>n_d) then
exit
endif
cycle
endif
dup = .True.
do k=1,N_int
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
dup = .False.
exit
endif
enddo
if (dup) then
duplicate(j) = .True.
found_duplicates = .True.
endif
j+=1
if (j>n_d) then
exit
endif
enddo
enddo
if (found_duplicates) then
! Copy filtered result
integer :: n_p
n_p=0
do i=1,n_d
if (duplicate(i)) then
cycle
endif
n_p = n_p + 1
do k=1,N_int
b%det(k,1,n_p) = tmp_array(k,1,i)
b%det(k,2,n_p) = tmp_array(k,2,i)
enddo
val(n_p) = val(i)
enddo
b%cur=n_p
b%N=n_p
endif
end

View File

@ -1,134 +0,0 @@
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights adjusted along the selection to make the PT2 contributions
! of each state coincide.
END_DOC
pt2_match_weight(:) = 1.d0
END_PROVIDER
BEGIN_PROVIDER [ double precision, variance_match_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights adjusted along the selection to make the variances
! of each state coincide.
END_DOC
variance_match_weight(:) = 1.d0
END_PROVIDER
subroutine update_pt2_and_variance_weights(pt2_data, N_st)
implicit none
use selection_types
BEGIN_DOC
! Updates the PT2- and Variance- matching weights.
END_DOC
integer, intent(in) :: N_st
type(pt2_type), intent(in) :: pt2_data
double precision :: pt2(N_st)
double precision :: variance(N_st)
double precision :: avg, element, dt, x
integer :: k
pt2(:) = pt2_data % pt2(:)
variance(:) = pt2_data % variance(:)
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
dt = 8.d0 !* selection_factor
do k=1,N_st
element = exp(dt*(pt2(k)/avg - 1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
pt2_match_weight(k) *= element
enddo
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
do k=1,N_st
element = exp(dt*(variance(k)/avg -1.d0))
element = min(2.0d0 , element)
element = max(0.5d0 , element)
variance_match_weight(k) *= element
enddo
if (N_det < 100) then
! For tiny wave functions, weights are 1.d0
pt2_match_weight(:) = 1.d0
variance_match_weight(:) = 1.d0
endif
threshold_davidson_pt2 = min(1.d-6, &
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
SOFT_TOUCH pt2_match_weight variance_match_weight threshold_davidson_pt2
end
BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights used in the selection criterion
END_DOC
select case (weight_selection)
case (0)
print *, 'Using input weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * state_average_weight(1:N_states)
case (1)
print *, 'Using 1/c_max^2 weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states)
case (2)
print *, 'Using pt2-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
case (3)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (4)
print *, 'Using variance- and pt2-matching weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
case (5)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (6)
print *, 'Using CI coefficient-based selection'
selection_weight(1:N_states) = c0_weight(1:N_states)
case (7)
print *, 'Input weights multiplied by variance- and pt2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
case (8)
print *, 'Input weights multiplied by pt2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
case (9)
print *, 'Input weights multiplied by variance-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * state_average_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
end select
print *, '# Total weight ', real(selection_weight(:),4)
END_PROVIDER

View File

@ -1,348 +0,0 @@
subroutine run_slave_cipsi
BEGIN_DOC
! Helper program for distributed parallelism
END_DOC
implicit none
call omp_set_max_active_levels(1)
distributed_davidson = .False.
read_wf = .False.
SOFT_TOUCH read_wf distributed_davidson
call provide_everything
call switch_qp_run_to_master
call run_slave_main
end
subroutine provide_everything
PROVIDE H_apply_buffer_allocated mo_two_e_integrals_in_map psi_det_generators psi_coef_generators psi_det_sorted_bit psi_selectors n_det_generators n_states generators_bitmask zmq_context N_states_diag
PROVIDE pt2_e0_denominator mo_num N_int ci_energy mpi_master zmq_state zmq_context
PROVIDE psi_det psi_coef threshold_generators state_average_weight
PROVIDE N_det_selectors pt2_stoch_istate N_det selection_weight pseudo_sym
end
subroutine run_slave_main
use f77_zmq
implicit none
IRP_IF MPI
include 'mpif.h'
IRP_ENDIF
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
double precision :: energy(N_states)
character*(64) :: states(10)
character*(64) :: old_state
integer :: rc, i, ierr
double precision :: t0, t1
integer, external :: zmq_get_dvector, zmq_get_N_det_generators
integer, external :: zmq_get8_dvector
integer, external :: zmq_get_ivector
integer, external :: zmq_get_psi, zmq_get_N_det_selectors, zmq_get_psi_bilinear
integer, external :: zmq_get_psi_notouch
integer, external :: zmq_get_N_states_diag
zmq_context = f77_zmq_ctx_new ()
states(1) = 'selection'
states(2) = 'davidson'
states(3) = 'pt2'
old_state = 'Waiting'
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
PROVIDE psi_det psi_coef threshold_generators state_average_weight mpi_master
PROVIDE zmq_state N_det_selectors pt2_stoch_istate N_det pt2_e0_denominator
PROVIDE N_det_generators N_states N_states_diag pt2_e0_denominator mpi_rank
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
do
if (mpi_master) then
call wait_for_states(states,zmq_state,size(states))
if (zmq_state(1:64) == old_state(1:64)) then
call usleep(200)
cycle
else
old_state(1:64) = zmq_state(1:64)
endif
print *, trim(zmq_state)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST (zmq_state, 128, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in broadcast of zmq_state'
endif
IRP_ENDIF
if(zmq_state(1:7) == 'Stopped') then
exit
endif
if (zmq_state(1:9) == 'selection') then
! Selection
! ---------
call wall_time(t0)
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_psi')
IRP_ENDIF
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector threshold_generators')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector energy')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_generators')
IRP_ENDIF
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_selectors')
IRP_ENDIF
if (zmq_get_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector state_average_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector selection_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) cycle
pt2_e0_denominator(1:N_states) = energy(1:N_states)
TOUCH pt2_e0_denominator state_average_weight threshold_generators selection_weight psi_det psi_coef
if (mpi_master) then
print *, 'N_det', N_det
print *, 'N_det_generators', N_det_generators
print *, 'N_det_selectors', N_det_selectors
print *, 'pt2_e0_denominator', pt2_e0_denominator
print *, 'pt2_stoch_istate', pt2_stoch_istate
print *, 'state_average_weight', state_average_weight
print *, 'selection_weight', selection_weight
endif
call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time')
IRP_IF MPI_DEBUG
call mpi_print('Entering OpenMP section')
IRP_ENDIF
!$OMP PARALLEL PRIVATE(i)
i = omp_get_thread_num()
call run_selection_slave(0,i,energy)
!$OMP END PARALLEL
print *, mpi_rank, ': Selection done'
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call mpi_print('----------')
else if (zmq_state(1:8) == 'davidson') then
! Davidson
! --------
call wall_time(t0)
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_states_diag')
IRP_ENDIF
if (zmq_get_N_states_diag(zmq_to_qp_run_socket,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_psi')
IRP_ENDIF
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time')
!---
call omp_set_max_active_levels(8)
call davidson_slave_tcp(0)
call omp_set_max_active_levels(1)
print *, mpi_rank, ': Davidson done'
!---
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call mpi_print('----------')
else if (zmq_state(1:3) == 'pt2') then
! PT2
! ---
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call wall_time(t0)
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_psi')
IRP_ENDIF
if (zmq_get_psi(zmq_to_qp_run_socket,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_generators')
IRP_ENDIF
if (zmq_get_N_det_generators (zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_N_det_selectors')
IRP_ENDIF
if (zmq_get_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector threshold_generators')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector energy')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'energy',energy,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_ivector pt2_stoch_istate')
IRP_ENDIF
if (zmq_get_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector state_average_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) cycle
IRP_IF MPI_DEBUG
call mpi_print('zmq_get_dvector selection_weight')
IRP_ENDIF
if (zmq_get_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) cycle
pt2_e0_denominator(1:N_states) = energy(1:N_states)
SOFT_TOUCH pt2_e0_denominator state_average_weight pt2_stoch_istate threshold_generators selection_weight psi_det psi_coef N_det_generators N_det_selectors
call wall_time(t1)
call write_double(6,(t1-t0),'Broadcast time')
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
IRP_IF MPI_DEBUG
call mpi_print('Entering OpenMP section')
IRP_ENDIF
if (.true.) then
integer :: nproc_target, ii
double precision :: mem_collector, mem, rss
call resident_memory(rss)
nproc_target = nthreads_pt2
ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2)
do
mem = rss + & !
nproc_target * 8.d0 * & ! bytes
( 0.5d0*pt2_n_tasks_max & ! task_id
+ 64.d0*pt2_n_tasks_max & ! task
+ 3.d0*pt2_n_tasks_max*N_states & ! pt2, variance, norm
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset
+ 3.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
+ 2.0d0*(ii) & ! preinteresting, interesting,
! prefullinteresting, fullinteresting
+ 2.0d0*(N_int*2*ii) & ! minilist, fullminilist
+ 1.0d0*(N_states*mo_num*mo_num) & ! mat
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(mem,irp_here)
nproc_target = 1
exit
endif
if (mem+rss < qp_max_mem) then
exit
endif
nproc_target = nproc_target - 1
enddo
if (N_det > 100000) then
if (mpi_master) then
print *, 'N_det', N_det
print *, 'N_det_generators', N_det_generators
print *, 'N_det_selectors', N_det_selectors
print *, 'pt2_e0_denominator', pt2_e0_denominator
print *, 'pt2_stoch_istate', pt2_stoch_istate
print *, 'state_average_weight', state_average_weight
print *, 'selection_weight', selection_weight
print *, 'Number of threads', nproc_target
endif
if (h0_type == 'CFG') then
PROVIDE det_to_configuration
endif
PROVIDE global_selection_buffer pt2_N_teeth pt2_F N_det_generators
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_tc_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted_tc
PROVIDE psi_det_hii selection_weight pseudo_sym pt2_min_parallel_tasks
if (mpi_master) then
print *, 'Running PT2'
endif
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target+1)
i = omp_get_thread_num()
call run_pt2_slave(0,i,pt2_e0_denominator)
!$OMP END PARALLEL
FREE state_average_weight
print *, mpi_rank, ': PT2 done'
print *, '-------'
endif
endif
IRP_IF MPI
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
print *, irp_here, 'error in barrier'
endif
IRP_ENDIF
call mpi_print('----------')
endif
end do
IRP_IF MPI
call MPI_finalize(ierr)
IRP_ENDIF
end

View File

@ -1,10 +1,13 @@
subroutine run_cipsi
implicit none
use selection_types
BEGIN_DOC
! Selected Full Configuration Interaction with deterministic selection and
! stochastic PT2.
! Selected Full Configuration Interaction with deterministic selection and
! stochastic PT2.
END_DOC
use selection_types
implicit none
integer :: i,j,k
type(pt2_type) :: pt2_data, pt2_data_err
double precision, allocatable :: zeros(:)

View File

@ -36,12 +36,3 @@ BEGIN_PROVIDER [ double precision, pt2_E0_denominator, (N_states) ]
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_overlap, (N_states, N_states) ]
implicit none
BEGIN_DOC
! Overlap between the perturbed wave functions
END_DOC
pt2_overlap(1:N_states,1:N_states) = 0.d0
END_PROVIDER

View File

@ -1,128 +0,0 @@
subroutine pt2_alloc(pt2_data,N)
implicit none
use selection_types
type(pt2_type), intent(inout) :: pt2_data
integer, intent(in) :: N
integer :: k
allocate(pt2_data % pt2(N) &
,pt2_data % variance(N) &
,pt2_data % rpt2(N) &
,pt2_data % overlap(N,N) &
)
pt2_data % pt2(:) = 0.d0
pt2_data % variance(:) = 0.d0
pt2_data % rpt2(:) = 0.d0
pt2_data % overlap(:,:) = 0.d0
end subroutine
subroutine pt2_dealloc(pt2_data)
implicit none
use selection_types
type(pt2_type), intent(inout) :: pt2_data
deallocate(pt2_data % pt2 &
,pt2_data % variance &
,pt2_data % rpt2 &
,pt2_data % overlap &
)
end subroutine
subroutine pt2_add(p1, w, p2)
implicit none
use selection_types
BEGIN_DOC
! p1 += w * p2
END_DOC
type(pt2_type), intent(inout) :: p1
double precision, intent(in) :: w
type(pt2_type), intent(in) :: p2
if (w == 1.d0) then
p1 % pt2(:) = p1 % pt2(:) + p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + p2 % overlap(:,:)
else
p1 % pt2(:) = p1 % pt2(:) + w * p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + w * p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + w * p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + w * p2 % overlap(:,:)
endif
end subroutine
subroutine pt2_add2(p1, w, p2)
implicit none
use selection_types
BEGIN_DOC
! p1 += w * p2**2
END_DOC
type(pt2_type), intent(inout) :: p1
double precision, intent(in) :: w
type(pt2_type), intent(in) :: p2
if (w == 1.d0) then
p1 % pt2(:) = p1 % pt2(:) + p2 % pt2(:) * p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + p2 % rpt2(:) * p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + p2 % variance(:) * p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + p2 % overlap(:,:) * p2 % overlap(:,:)
else
p1 % pt2(:) = p1 % pt2(:) + w * p2 % pt2(:) * p2 % pt2(:)
p1 % rpt2(:) = p1 % rpt2(:) + w * p2 % rpt2(:) * p2 % rpt2(:)
p1 % variance(:) = p1 % variance(:) + w * p2 % variance(:) * p2 % variance(:)
p1 % overlap(:,:) = p1 % overlap(:,:) + w * p2 % overlap(:,:) * p2 % overlap(:,:)
endif
end subroutine
subroutine pt2_serialize(pt2_data, n, x)
implicit none
use selection_types
type(pt2_type), intent(in) :: pt2_data
integer, intent(in) :: n
double precision, intent(out) :: x(*)
integer :: i,k,n2
n2 = n*n
x(1:n) = pt2_data % pt2(1:n)
k=n
x(k+1:k+n) = pt2_data % rpt2(1:n)
k=k+n
x(k+1:k+n) = pt2_data % variance(1:n)
k=k+n
x(k+1:k+n2) = reshape(pt2_data % overlap(1:n,1:n), (/ n2 /))
end
subroutine pt2_deserialize(pt2_data, n, x)
implicit none
use selection_types
type(pt2_type), intent(inout) :: pt2_data
integer, intent(in) :: n
double precision, intent(in) :: x(*)
integer :: i,k,n2
n2 = n*n
pt2_data % pt2(1:n) = x(1:n)
k=n
pt2_data % rpt2(1:n) = x(k+1:k+n)
k=k+n
pt2_data % variance(1:n) = x(k+1:k+n)
k=k+n
pt2_data % overlap(1:n,1:n) = reshape(x(k+1:k+n2), (/ n, n /))
end

View File

@ -1,256 +1,5 @@
subroutine run_selection_slave(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done, buffer_ready
type(pt2_type) :: pt2_data
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym
PROVIDE psi_selectors_coef_transp psi_det_sorted weight_selection
call pt2_alloc(pt2_data,N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
buf%N = 0
buffer_ready = .False.
ctask = 1
do
integer, external :: get_task_from_taskserver
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task) == -1) then
exit
endif
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, N, subset, bsize
call sscanf_ddd(task, subset, i_generator, N)
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
buffer_ready = .True.
else
if (N /= buf%N) then
print *, 'N=', N
print *, 'buf%N=', buf%N
print *, 'bug in ', irp_here
stop '-1'
end if
end if
call select_connected(i_generator, energy, pt2_data, buf, subset, pt2_F(i_generator))
endif
integer, external :: task_done_to_taskserver
if(done .or. ctask == size(task_id)) then
do i=1, ctask
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
call usleep(100)
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
ctask = 0
done = .true.
exit
endif
endif
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
call pt2_dealloc(pt2_data)
call pt2_alloc(pt2_data,N_states)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
call pt2_dealloc(pt2_data)
integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
continue
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
if (buffer_ready) then
call delete_selection_buffer(buf)
! call delete_selection_buffer(buf2)
endif
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2_data, b, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntasks, task_id(*)
integer :: rc
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
call pt2_serialize(pt2_data,N_states,pt2_serialized)
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 3
return
else if(rc /= size(pt2_serialized)*8) then
stop 'push'
endif
deallocate(pt2_serialized)
if (b%cur > 0) then
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)'
endif
endif
rc = f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
character*(2) :: ok
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
print *, irp_here//': error in receiving ok'
stop -1
endif
IRP_ENDIF
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2_data, val, det, N, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(pt2_type), intent(inout) :: pt2_data
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntasks, task_id(*)
integer :: rc, rn, i
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, N, 4, 0)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized), 0)
if (rc == -1) then
ntasks = 1
task_id(1) = 0
else if(rc /= 8*size(pt2_serialized)) then
stop 'pull'
endif
call pt2_deserialize(pt2_data,N_states,pt2_serialized)
deallocate(pt2_serialized)
if (N>0) then
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)'
endif
endif
rc = f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, 0)
if (rc /= 2) then
print *, irp_here//': error in sending ok'
stop -1
endif
IRP_ENDIF
end subroutine
subroutine provide_for_selection_slave
PROVIDE psi_det_sorted_order
PROVIDE psi_selectors_coef_transp psi_det_sorted
end

View File

@ -141,12 +141,12 @@ double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
end
subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,buf,subset,csubset)
subroutine select_singles_and_doubles(i_generator, hole_mask, particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset)
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
END_DOC
integer, intent(in) :: i_generator, subset, csubset
@ -156,28 +156,35 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii,sze
integer :: h1, h2, s1, s2, s3, i1, i2, ib, sp, k, i, j, nt, ii, sze
integer :: maskInd
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
integer :: l_a, nmax, idx
integer :: nb_count, maskInd_save
integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2)
logical :: fullMatch, ok
integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2)
integer,allocatable :: preinteresting(:), prefullinteresting(:)
integer,allocatable :: interesting(:), fullinteresting(:)
integer,allocatable :: tmp_array(:)
logical :: fullMatch, ok
logical :: monoAdo, monoBdo
logical :: monoBdo_save
logical :: found
integer, allocatable :: preinteresting(:), prefullinteresting(:)
integer, allocatable :: interesting(:), fullinteresting(:)
integer, allocatable :: tmp_array(:)
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
double precision, allocatable :: coef_fullminilist_rev(:,:)
double precision, allocatable :: mat(:,:,:)
logical :: monoAdo, monoBdo
integer :: maskInd
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order psi_bilinear_matrix_transp_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp
PROVIDE psi_selectors_coef_transp psi_det_sorted_order
PROVIDE banned_excitation
monoAdo = .true.
@ -192,17 +199,9 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2))
enddo
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
integer :: l_a, nmax, idx
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
! Removed to avoid introducing determinants already presents in the wf
!double precision, parameter :: norm_thr = 1.d-16
@ -320,22 +319,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2))
allocate (mat(N_states, mo_num, mo_num))
allocate(mat(N_states, mo_num, mo_num))
maskInd = -1
integer :: nb_count, maskInd_save
logical :: monoBdo_save
logical :: found
do s1=1,2
do i1=N_holes(s1),1,-1 ! Generate low excitations first
do s1 = 1, 2
do i1 = N_holes(s1), 1, -1 ! Generate low excitations first
found = .False.
monoBdo_save = monoBdo
maskInd_save = maskInd
do s2=s1,2
do s2 = s1, 2
ib = 1
if(s1 == s2) ib = i1+1
do i2=N_holes(s2),ib,-1
do i2 = N_holes(s2), ib, -1
maskInd = maskInd + 1
if(mod(maskInd, csubset) == (subset-1)) then
found = .True.
@ -349,14 +345,14 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
maskInd = maskInd_save
h1 = hole_list(i1,s1)
call apply_hole(psi_det_generators(1,1,i_generator), s1,h1, pmask, ok, N_int)
call apply_hole(psi_det_generators(1,1,i_generator), s1, h1, pmask, ok, N_int)
negMask = not(pmask)
interesting(0) = 0
fullinteresting(0) = 0
do ii=1,preinteresting(0)
do ii = 1, preinteresting(0)
i = preinteresting(ii)
select case (N_int)
case (1)
@ -372,7 +368,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted(1:3,1,i))
mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted(1:3,2,i))
nt = 0
do j=3,1,-1
do j = 3, 1, -1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
@ -386,7 +382,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted(1:4,1,i))
mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted(1:4,2,i))
nt = 0
do j=4,1,-1
do j = 4, 1, -1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
@ -400,7 +396,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted(1:N_int,1,i))
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted(1:N_int,2,i))
nt = 0
do j=N_int,1,-1
do j = N_int, 1, -1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
@ -441,7 +437,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
end do
do ii=1,prefullinteresting(0)
do ii = 1, prefullinteresting(0)
i = prefullinteresting(ii)
nt = 0
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
@ -480,40 +476,38 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
minilist(:,:,i) = psi_det_sorted(:,:,interesting(i))
enddo
do s2=s1,2
do s2 = s1, 2
sp = s1
if(s1 /= s2) then
sp = 3
endif
if(s1 /= s2) sp = 3
ib = 1
if(s1 == s2) ib = i1+1
monoAdo = .true.
do i2=N_holes(s2),ib,-1 ! Generate low excitations first
do i2 = N_holes(s2), ib, -1 ! Generate low excitations first
h2 = hole_list(i2,s2)
call apply_hole(pmask, s2,h2, mask, ok, N_int)
banned(:,:,1) = banned_excitation(:,:)
banned(:,:,2) = banned_excitation(:,:)
do j=1,mo_num
do j = 1, mo_num
bannedOrb(j, 1) = .true.
bannedOrb(j, 2) = .true.
enddo
do s3=1,2
do i=1,N_particles(s3)
do s3 = 1, 2
do i = 1, N_particles(s3)
bannedOrb(particle_list(i,s3), s3) = .false.
enddo
enddo
if(s1 /= s2) then
if(monoBdo) then
bannedOrb(h1,s1) = .false.
end if
endif
if(monoAdo) then
bannedOrb(h2,s2) = .false.
monoAdo = .false.
end if
end if
endif
endif
maskInd = maskInd + 1
if(mod(maskInd, csubset) == (subset-1)) then
@ -522,12 +516,18 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
if(fullMatch) cycle
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
deallocate(fullminilist,minilist)
deallocate(fullminilist, minilist)
enddo
enddo
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)

View File

@ -1,25 +0,0 @@
module selection_types
type selection_buffer
integer :: N, cur
integer(8) , pointer :: det(:,:,:)
double precision, pointer :: val(:)
double precision :: mini
endtype
type pt2_type
double precision, allocatable :: pt2(:)
double precision, allocatable :: rpt2(:)
double precision, allocatable :: variance(:)
double precision, allocatable :: overlap(:,:)
endtype
contains
integer function pt2_type_size(N)
implicit none
integer, intent(in) :: N
pt2_type_size = (3*n + n*n)
end function
end module

View File

@ -0,0 +1,5 @@
===========
cipsi_utils
===========
Common functions for CIPSI and TC-CIPSI

View File

@ -0,0 +1,891 @@
BEGIN_PROVIDER [ integer, pt2_stoch_istate ]
implicit none
BEGIN_DOC
! State for stochatsic PT2
END_DOC
pt2_stoch_istate = 1
END_PROVIDER
BEGIN_PROVIDER [ integer, pt2_F, (N_det_generators) ]
&BEGIN_PROVIDER [ integer, pt2_n_tasks_max ]
implicit none
logical, external :: testTeethBuilding
integer :: i,j
pt2_n_tasks_max = elec_alpha_num*elec_alpha_num + elec_alpha_num*elec_beta_num - n_core_orb*2
pt2_n_tasks_max = min(pt2_n_tasks_max,1+N_det_generators/10000)
call write_int(6,pt2_n_tasks_max,'pt2_n_tasks_max')
pt2_F(:) = max(int(sqrt(float(pt2_n_tasks_max))),1)
do i=1,pt2_n_0(1+pt2_N_teeth/4)
pt2_F(i) = pt2_n_tasks_max*pt2_min_parallel_tasks
enddo
do i=1+pt2_n_0(pt2_N_teeth-pt2_N_teeth/4), pt2_n_0(pt2_N_teeth-pt2_N_teeth/10)
pt2_F(i) = pt2_min_parallel_tasks
enddo
do i=1+pt2_n_0(pt2_N_teeth-pt2_N_teeth/10), N_det_generators
pt2_F(i) = 1
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, pt2_N_teeth ]
&BEGIN_PROVIDER [ integer, pt2_minDetInFirstTeeth ]
implicit none
logical, external :: testTeethBuilding
if(N_det_generators < 1024) then
pt2_minDetInFirstTeeth = 1
pt2_N_teeth = 1
else
pt2_minDetInFirstTeeth = min(5, N_det_generators)
do pt2_N_teeth=100,2,-1
if(testTeethBuilding(pt2_minDetInFirstTeeth, pt2_N_teeth)) exit
end do
end if
call write_int(6,pt2_N_teeth,'Number of comb teeth')
END_PROVIDER
logical function testTeethBuilding(minF, N)
implicit none
integer, intent(in) :: minF, N
integer :: n0, i
double precision :: u0, Wt, r
double precision, allocatable :: tilde_w(:), tilde_cW(:)
integer, external :: dress_find_sample
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here)
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
double precision :: norm2
norm2 = 0.d0
do i=N_det_generators,1,-1
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate) * &
psi_coef_sorted_gen(i,pt2_stoch_istate)
norm2 = norm2 + tilde_w(i)
enddo
f = 1.d0/norm2
tilde_w(:) = tilde_w(:) * f
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
deallocate(tilde_w)
n0 = 0
testTeethBuilding = .false.
double precision :: f
integer :: minFN
minFN = N_det_generators - minF * N
f = 1.d0/dble(N)
do
u0 = tilde_cW(n0)
r = tilde_cW(n0 + minF)
Wt = (1d0 - u0) * f
if (dabs(Wt) <= 1.d-3) then
exit
endif
if(Wt >= r - u0) then
testTeethBuilding = .true.
exit
end if
n0 += 1
if(n0 > minFN) then
exit
end if
end do
deallocate(tilde_cW)
end function
!subroutine provide_for_zmq_pt2
! PROVIDE psi_det_sorted_order psi_selectors_coef_transp psi_det_sorted
!end
subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
integer, intent(in) :: N_in
double precision, intent(in) :: relative_error, E(N_states)
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
!
integer :: i, N
double precision :: state_average_weight_save(N_states), w(N_states,4)
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
type(selection_buffer) :: b
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order
PROVIDE psi_det_hii selection_weight pseudo_sym
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
call provide_for_zmq_pt2
if (h0_type == 'CFG') then
PROVIDE psi_configuration_hii det_to_configuration
endif
if (N_det <= max(4,N_states) .or. pt2_N_teeth < 2) then
call ZMQ_selection(N_in, pt2_data)
else
N = max(N_in,1) * N_states
state_average_weight_save(:) = state_average_weight(:)
if (int(N,8)*2_8 > huge(1)) then
print *, irp_here, ': integer too large'
stop -1
endif
call create_selection_buffer(N, N*2, b)
ASSERT (associated(b%det))
ASSERT (associated(b%val))
do pt2_stoch_istate=1,N_states
state_average_weight(:) = 0.d0
state_average_weight(pt2_stoch_istate) = 1.d0
TOUCH state_average_weight pt2_stoch_istate selection_weight
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals pt2_w
PROVIDE psi_selectors pt2_u pt2_J pt2_R
call new_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
integer, external :: zmq_put_psi
integer, external :: zmq_put_N_det_generators
integer, external :: zmq_put_N_det_selectors
integer, external :: zmq_put_dvector
integer, external :: zmq_put_ivector
if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then
stop 'Unable to put psi on ZMQ server'
endif
if (zmq_put_N_det_generators(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_generators on ZMQ server'
endif
if (zmq_put_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_selectors on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',pt2_e0_denominator,size(pt2_e0_denominator)) == -1) then
stop 'Unable to put energy on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'state_average_weight',state_average_weight,N_states) == -1) then
stop 'Unable to put state_average_weight on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'selection_weight',selection_weight,N_states) == -1) then
stop 'Unable to put selection_weight on ZMQ server'
endif
if (zmq_put_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) then
stop 'Unable to put pt2_stoch_istate on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) then
stop 'Unable to put threshold_generators on ZMQ server'
endif
integer, external :: add_task_to_taskserver
character(300000) :: task
integer :: j,k,ipos,ifirst
ifirst=0
ipos=0
do i=1,N_det_generators
if (pt2_F(i) > 1) then
ipos += 1
endif
enddo
call write_int(6,sum(pt2_F),'Number of tasks')
call write_int(6,ipos,'Number of fragmented tasks')
ipos=1
do i= 1, N_det_generators
do j=1,pt2_F(pt2_J(i))
write(task(ipos:ipos+30),'(I9,1X,I9,1X,I9,''|'')') j, pt2_J(i), N_in
ipos += 30
if (ipos > 300000-30) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
ipos=1
if (ifirst == 0) then
ifirst=1
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
endif
endif
end do
enddo
if (ipos > 1) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
endif
integer, external :: zmq_set_running
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
double precision :: mem_collector, mem, rss
call resident_memory(rss)
mem_collector = 8.d0 * & ! bytes
( 1.d0*pt2_n_tasks_max & ! task_id, index
+ 0.635d0*N_det_generators & ! f,d
+ pt2_n_tasks_max*pt2_type_size(N_states) & ! pt2_data_task
+ N_det_generators*pt2_type_size(N_states) & ! pt2_data_I
+ 4.d0*(pt2_N_teeth+1) & ! S, S2, T2, T3
+ 1.d0*(N_int*2.d0*N + N) & ! selection buffer
+ 1.d0*(N_int*2.d0*N + N) & ! sort selection buffer
) / 1024.d0**3
integer :: nproc_target, ii
nproc_target = nthreads_pt2
ii = min(N_det, (elec_alpha_num*(mo_num-elec_alpha_num))**2)
do
mem = mem_collector + & !
nproc_target * 8.d0 * & ! bytes
( 0.5d0*pt2_n_tasks_max & ! task_id
+ 64.d0*pt2_n_tasks_max & ! task
+ pt2_type_size(N_states)*pt2_n_tasks_max*N_states & ! pt2, variance, overlap
+ 1.d0*pt2_n_tasks_max & ! i_generator, subset
+ 1.d0*(N_int*2.d0*ii+ ii) & ! selection buffer
+ 1.d0*(N_int*2.d0*ii+ ii) & ! sort selection buffer
+ 2.0d0*(ii) & ! preinteresting, interesting,
! prefullinteresting, fullinteresting
+ 2.0d0*(N_int*2*ii) & ! minilist, fullminilist
+ 1.0d0*(N_states*mo_num*mo_num) & ! mat
) / 1024.d0**3
if (nproc_target == 0) then
call check_mem(mem,irp_here)
nproc_target = 1
exit
endif
if (mem+rss < qp_max_mem) then
exit
endif
nproc_target = nproc_target - 1
enddo
call write_int(6,nproc_target,'Number of threads for PT2')
call write_double(6,mem,'Memory (Gb)')
call set_multiple_levels_omp(.False.)
print '(A)', '========== ==================== ================ ================ ================ ============= ==========='
print '(A)', ' Samples Energy PT2 Variance Norm^2 Convergence Seconds'
print '(A)', '========== ==================== ================ ================ ================ ============= ==========='
PROVIDE global_selection_buffer
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc_target+1) &
!$OMP PRIVATE(i)
i = omp_get_thread_num()
if (i==0) then
call pt2_collector(zmq_socket_pull, E(pt2_stoch_istate),relative_error, pt2_data, pt2_data_err, b, N)
pt2_data % rpt2(pt2_stoch_istate) = &
pt2_data % pt2(pt2_stoch_istate)/(1.d0+pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
!TODO : We should use here the correct formula for the error of X/Y
pt2_data_err % rpt2(pt2_stoch_istate) = &
pt2_data_err % pt2(pt2_stoch_istate)/(1.d0 + pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate))
else
call pt2_slave_inproc(i)
endif
!$OMP END PARALLEL
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
call set_multiple_levels_omp(.True.)
print '(A)', '========== ==================== ================ ================ ================ ============= ==========='
do k=1,N_states
pt2_overlap(pt2_stoch_istate,k) = pt2_data % overlap(k,pt2_stoch_istate)
enddo
SOFT_TOUCH pt2_overlap
enddo
FREE pt2_stoch_istate
! Symmetrize overlap
do j=2,N_states
do i=1,j-1
pt2_overlap(i,j) = 0.5d0 * (pt2_overlap(i,j) + pt2_overlap(j,i))
pt2_overlap(j,i) = pt2_overlap(i,j)
enddo
enddo
print *, 'Overlap of perturbed states:'
do k=1,N_states
print *, pt2_overlap(k,:)
enddo
print *, '-------'
if (N_in > 0) then
b%cur = min(N_in,b%cur)
if (s2_eig) then
call make_selection_buffer_s2(b)
else
call remove_duplicates_in_selection_buffer(b)
endif
call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0)
endif
call delete_selection_buffer(b)
state_average_weight(:) = state_average_weight_save(:)
TOUCH state_average_weight
call update_pt2_and_variance_weights(pt2_data, N_states)
endif
end subroutine
subroutine pt2_slave_inproc(i)
implicit none
integer, intent(in) :: i
PROVIDE global_selection_buffer
call run_pt2_slave(1,i,pt2_e0_denominator)
end
subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_err, b, N_)
use f77_zmq
use selection_types
use bitmasks
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(in) :: relative_error, E
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: N_
type(pt2_type), allocatable :: pt2_data_task(:)
type(pt2_type), allocatable :: pt2_data_I(:)
type(pt2_type), allocatable :: pt2_data_S(:)
type(pt2_type), allocatable :: pt2_data_S2(:)
type(pt2_type) :: pt2_data_teeth
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer, external :: zmq_delete_tasks_async_send
integer, external :: zmq_delete_tasks_async_recv
integer, external :: zmq_abort
integer, external :: pt2_find_sample_lr
PROVIDE pt2_stoch_istate
integer :: more, n, i, p, c, t, n_tasks, U
integer, allocatable :: task_id(:)
integer, allocatable :: index(:)
double precision :: v, x, x2, x3, avg, avg2, avg3(N_states), eqt, E0, v0, n0(N_states)
double precision :: eqta(N_states)
double precision :: time, time1, time0
integer, allocatable :: f(:)
logical, allocatable :: d(:)
logical :: do_exit, stop_now, sending
logical, external :: qp_stop
type(selection_buffer) :: b2
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
character(len=20) :: format_str1, str_error1, format_str2, str_error2
character(len=20) :: format_str3, str_error3, format_str4, str_error4
character(len=20) :: format_value1, format_value2, format_value3, format_value4
character(len=20) :: str_value1, str_value2, str_value3, str_value4
character(len=20) :: str_conv
double precision :: value1, value2, value3, value4
double precision :: error1, error2, error3, error4
integer :: size1,size2,size3,size4
double precision :: conv_crit
sending =.False.
rss = memory_of_int(pt2_n_tasks_max*2+N_det_generators*2)
rss += memory_of_double(N_states*N_det_generators)*3.d0
rss += memory_of_double(N_states*pt2_n_tasks_max)*3.d0
rss += memory_of_double(pt2_N_teeth+1)*4.d0
call check_mem(rss,irp_here)
! If an allocation is added here, the estimate of the memory should also be
! updated in ZMQ_pt2
allocate(task_id(pt2_n_tasks_max), index(pt2_n_tasks_max), f(N_det_generators))
allocate(d(N_det_generators+1))
allocate(pt2_data_task(pt2_n_tasks_max))
allocate(pt2_data_I(N_det_generators))
allocate(pt2_data_S(pt2_N_teeth+1))
allocate(pt2_data_S2(pt2_N_teeth+1))
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
call create_selection_buffer(N_, N_*2, b2)
pt2_data % pt2(pt2_stoch_istate) = -huge(1.)
pt2_data_err % pt2(pt2_stoch_istate) = huge(1.)
pt2_data % variance(pt2_stoch_istate) = huge(1.)
pt2_data_err % variance(pt2_stoch_istate) = huge(1.)
pt2_data % overlap(:,pt2_stoch_istate) = 0.d0
pt2_data_err % overlap(:,pt2_stoch_istate) = huge(1.)
n = 1
t = 0
U = 0
do i=1,pt2_n_tasks_max
call pt2_alloc(pt2_data_task(i),N_states)
enddo
do i=1,pt2_N_teeth+1
call pt2_alloc(pt2_data_S(i),N_states)
call pt2_alloc(pt2_data_S2(i),N_states)
enddo
do i=1,N_det_generators
call pt2_alloc(pt2_data_I(i),N_states)
enddo
f(:) = pt2_F(:)
d(:) = .false.
n_tasks = 0
E0 = E
v0 = 0.d0
n0(:) = 0.d0
more = 1
call wall_time(time0)
time1 = time0
do_exit = .false.
stop_now = .false.
do while (n <= N_det_generators)
if(f(pt2_J(n)) == 0) then
d(pt2_J(n)) = .true.
do while(d(U+1))
U += 1
end do
! Deterministic part
do while(t <= pt2_N_teeth)
if(U >= pt2_n_0(t+1)) then
t=t+1
E0 = 0.d0
v0 = 0.d0
n0(:) = 0.d0
do i=pt2_n_0(t),1,-1
E0 += pt2_data_I(i) % pt2(pt2_stoch_istate)
v0 += pt2_data_I(i) % variance(pt2_stoch_istate)
n0(:) += pt2_data_I(i) % overlap(:,pt2_stoch_istate)
end do
else
exit
end if
end do
! Add Stochastic part
c = pt2_R(n)
if(c > 0) then
call pt2_alloc(pt2_data_teeth,N_states)
do p=pt2_N_teeth, 1, -1
v = pt2_u_0 + pt2_W_T * (pt2_u(c) + dble(p-1))
i = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(p),pt2_n_0(p+1))
v = pt2_W_T / pt2_w(i)
call pt2_add ( pt2_data_teeth, v, pt2_data_I(i) )
call pt2_add ( pt2_data_S(p), 1.d0, pt2_data_teeth )
call pt2_add2( pt2_data_S2(p), 1.d0, pt2_data_teeth )
enddo
call pt2_dealloc(pt2_data_teeth)
avg = E0 + pt2_data_S(t) % pt2(pt2_stoch_istate) / dble(c)
avg2 = v0 + pt2_data_S(t) % variance(pt2_stoch_istate) / dble(c)
avg3(:) = n0(:) + pt2_data_S(t) % overlap(:,pt2_stoch_istate) / dble(c)
if ((avg /= 0.d0) .or. (n == N_det_generators) ) then
do_exit = .true.
endif
if (qp_stop()) then
stop_now = .True.
endif
pt2_data % pt2(pt2_stoch_istate) = avg
pt2_data % variance(pt2_stoch_istate) = avg2
pt2_data % overlap(:,pt2_stoch_istate) = avg3(:)
call wall_time(time)
! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
if(c > 2) then
eqt = dabs((pt2_data_S2(t) % pt2(pt2_stoch_istate) / c) - (pt2_data_S(t) % pt2(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
pt2_data_err % pt2(pt2_stoch_istate) = eqt
eqt = dabs((pt2_data_S2(t) % variance(pt2_stoch_istate) / c) - (pt2_data_S(t) % variance(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqt = sqrt(eqt / (dble(c) - 1.5d0))
pt2_data_err % variance(pt2_stoch_istate) = eqt
eqta(:) = dabs((pt2_data_S2(t) % overlap(:,pt2_stoch_istate) / c) - (pt2_data_S(t) % overlap(:,pt2_stoch_istate)/c)**2) ! dabs for numerical stability
eqta(:) = sqrt(eqta(:) / (dble(c) - 1.5d0))
pt2_data_err % overlap(:,pt2_stoch_istate) = eqta(:)
if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then
time1 = time
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.4)', c, &
pt2_data % pt2(pt2_stoch_istate) +E, &
pt2_data_err % pt2(pt2_stoch_istate), &
pt2_data % variance(pt2_stoch_istate), &
pt2_data_err % variance(pt2_stoch_istate), &
pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate), &
pt2_data_err % overlap(pt2_stoch_istate,pt2_stoch_istate), &
time-time0
if (stop_now .or. ( &
(do_exit .and. (dabs(pt2_data_err % pt2(pt2_stoch_istate)) / &
(1.d-20 + dabs(pt2_data % pt2(pt2_stoch_istate)) ) <= relative_error))) ) then
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
call sleep(10)
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Error in sending abort signal (2)'
endif
endif
endif
endif
endif
end if
n += 1
else if(more == 0) then
exit
else
call pull_pt2_results(zmq_socket_pull, index, pt2_data_task, task_id, n_tasks, b2)
if(n_tasks > pt2_n_tasks_max)then
print*,'PB !!!'
print*,'If you see this, send a bug report with the following content'
print*,irp_here
print*,'n_tasks,pt2_n_tasks_max = ',n_tasks,pt2_n_tasks_max
stop -1
endif
if (zmq_delete_tasks_async_send(zmq_to_qp_run_socket,task_id,n_tasks,sending) == -1) then
stop 'PT2: Unable to delete tasks (send)'
endif
do i=1,n_tasks
if(index(i).gt.size(pt2_data_I,1).or.index(i).lt.1)then
print*,'PB !!!'
print*,'If you see this, send a bug report with the following content'
print*,irp_here
print*,'i,index(i),size(pt2_data_I,1) = ',i,index(i),size(pt2_data_I,1)
stop -1
endif
call pt2_add(pt2_data_I(index(i)),1.d0,pt2_data_task(i))
f(index(i)) -= 1
end do
do i=1, b2%cur
! We assume the pulled buffer is sorted
if (b2%val(i) > b%mini) exit
call add_to_selection_buffer(b, b2%det(1,1,i), b2%val(i))
end do
if (zmq_delete_tasks_async_recv(zmq_to_qp_run_socket,more,sending) == -1) then
stop 'PT2: Unable to delete tasks (recv)'
endif
end if
end do
do i=1,N_det_generators
call pt2_dealloc(pt2_data_I(i))
enddo
do i=1,pt2_N_teeth+1
call pt2_dealloc(pt2_data_S(i))
call pt2_dealloc(pt2_data_S2(i))
enddo
do i=1,pt2_n_tasks_max
call pt2_dealloc(pt2_data_task(i))
enddo
!print *, 'deleting b2'
call delete_selection_buffer(b2)
!print *, 'sorting b'
call sort_selection_buffer(b)
!print *, 'done'
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
end subroutine
integer function pt2_find_sample(v, w)
implicit none
double precision, intent(in) :: v, w(0:N_det_generators)
integer, external :: pt2_find_sample_lr
pt2_find_sample = pt2_find_sample_lr(v, w, 0, N_det_generators)
end function
integer function pt2_find_sample_lr(v, w, l_in, r_in)
implicit none
double precision, intent(in) :: v, w(0:N_det_generators)
integer, intent(in) :: l_in,r_in
integer :: i,l,r
l=l_in
r=r_in
do while(r-l > 1)
i = shiftr(r+l,1)
if(w(i) < v) then
l = i
else
r = i
end if
end do
i = r
do r=i+1,N_det_generators
if (w(r) /= w(i)) then
exit
endif
enddo
pt2_find_sample_lr = r-1
end function
BEGIN_PROVIDER [ integer, pt2_n_tasks ]
implicit none
BEGIN_DOC
! Number of parallel tasks for the Monte Carlo
END_DOC
pt2_n_tasks = N_det_generators
END_PROVIDER
BEGIN_PROVIDER[ double precision, pt2_u, (N_det_generators)]
implicit none
integer, allocatable :: seed(:)
integer :: m,i
call random_seed(size=m)
allocate(seed(m))
do i=1,m
seed(i) = i
enddo
call random_seed(put=seed)
deallocate(seed)
call RANDOM_NUMBER(pt2_u)
END_PROVIDER
BEGIN_PROVIDER[ integer, pt2_J, (N_det_generators)]
&BEGIN_PROVIDER[ integer, pt2_R, (N_det_generators)]
implicit none
BEGIN_DOC
! pt2_J contains the list of generators after ordering them according to the
! Monte Carlo sampling.
!
! pt2_R(i) is the number of combs drawn when determinant i is computed.
END_DOC
integer :: N_c, N_j
integer :: U, t, i
double precision :: v
integer, external :: pt2_find_sample_lr
logical, allocatable :: pt2_d(:)
integer :: m,l,r,k
integer :: ncache
integer, allocatable :: ii(:,:)
double precision :: dt
ncache = min(N_det_generators,10000)
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_int(ncache)*dble(pt2_N_teeth) + memory_of_int(N_det_generators)
call check_mem(rss,irp_here)
allocate(ii(pt2_N_teeth,ncache),pt2_d(N_det_generators))
pt2_R(:) = 0
pt2_d(:) = .false.
N_c = 0
N_j = pt2_n_0(1)
do i=1,N_j
pt2_d(i) = .true.
pt2_J(i) = i
end do
U = 0
do while(N_j < pt2_n_tasks)
if (N_c+ncache > N_det_generators) then
ncache = N_det_generators - N_c
endif
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(dt,v,t,k)
do k=1, ncache
dt = pt2_u_0
do t=1, pt2_N_teeth
v = dt + pt2_W_T *pt2_u(N_c+k)
dt = dt + pt2_W_T
ii(t,k) = pt2_find_sample_lr(v, pt2_cW,pt2_n_0(t),pt2_n_0(t+1))
end do
enddo
!$OMP END PARALLEL DO
do k=1,ncache
!ADD_COMB
N_c = N_c+1
do t=1, pt2_N_teeth
i = ii(t,k)
if(.not. pt2_d(i)) then
N_j += 1
pt2_J(N_j) = i
pt2_d(i) = .true.
end if
end do
pt2_R(N_j) = N_c
!FILL_TOOTH
do while(U < N_det_generators)
U += 1
if(.not. pt2_d(U)) then
N_j += 1
pt2_J(N_j) = U
pt2_d(U) = .true.
exit
end if
end do
if (N_j >= pt2_n_tasks) exit
end do
enddo
if(N_det_generators > 1) then
pt2_R(N_det_generators-1) = 0
pt2_R(N_det_generators) = N_c
end if
deallocate(ii,pt2_d)
END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_w, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_cW, (0:N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_W_T ]
&BEGIN_PROVIDER [ double precision, pt2_u_0 ]
&BEGIN_PROVIDER [ integer, pt2_n_0, (pt2_N_teeth+1) ]
implicit none
integer :: i, t
double precision, allocatable :: tilde_w(:), tilde_cW(:)
double precision :: r, tooth_width
integer, external :: pt2_find_sample
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here)
if (N_det_generators == 1) then
pt2_w(1) = 1.d0
pt2_cw(1) = 1.d0
pt2_u_0 = 1.d0
pt2_W_T = 0.d0
pt2_n_0(1) = 0
pt2_n_0(2) = 1
else
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
tilde_cW(0) = 0d0
do i=1,N_det_generators
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
enddo
double precision :: norm2
norm2 = 0.d0
do i=N_det_generators,1,-1
norm2 += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm2
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
pt2_n_0(1) = 0
do
pt2_u_0 = tilde_cW(pt2_n_0(1))
r = tilde_cW(pt2_n_0(1) + pt2_minDetInFirstTeeth)
pt2_W_T = (1d0 - pt2_u_0) / dble(pt2_N_teeth)
if(pt2_W_T >= r - pt2_u_0) then
exit
end if
pt2_n_0(1) += 1
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
print *, "teeth building failed"
stop -1
end if
end do
do t=2, pt2_N_teeth
r = pt2_u_0 + pt2_W_T * dble(t-1)
pt2_n_0(t) = pt2_find_sample(r, tilde_cW)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
do t=1, pt2_N_teeth
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
if (tooth_width == 0.d0) then
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do
end do
pt2_cW(0) = 0d0
do i=1,N_det_generators
pt2_cW(i) = pt2_cW(i-1) + pt2_w(i)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_overlap, (N_states, N_states) ]
implicit none
BEGIN_DOC
! Overlap between the perturbed wave functions
END_DOC
pt2_overlap(1:N_states,1:N_states) = 0.d0
END_PROVIDER

View File

@ -0,0 +1,257 @@
subroutine run_selection_slave(thread,iproc,energy)
use f77_zmq
use selection_types
implicit none
double precision, intent(in) :: energy(N_states)
integer, intent(in) :: thread, iproc
integer :: rc, i
integer :: worker_id, task_id(1), ctask, ltask
character*(512) :: task
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_push_socket
integer(ZMQ_PTR) :: zmq_socket_push
type(selection_buffer) :: buf, buf2
logical :: done, buffer_ready
type(pt2_type) :: pt2_data
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order N_int pt2_F pseudo_sym
PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order weight_selection
call provide_for_selection_slave
call pt2_alloc(pt2_data,N_states)
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
integer, external :: connect_to_taskserver
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
return
endif
zmq_socket_push = new_zmq_push_socket(thread)
buf%N = 0
buffer_ready = .False.
ctask = 1
do
integer, external :: get_task_from_taskserver
if (get_task_from_taskserver(zmq_to_qp_run_socket,worker_id, task_id(ctask), task) == -1) then
exit
endif
done = task_id(ctask) == 0
if (done) then
ctask = ctask - 1
else
integer :: i_generator, N, subset, bsize
call sscanf_ddd(task, subset, i_generator, N)
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)
buffer_ready = .True.
else
if (N /= buf%N) then
print *, 'N=', N
print *, 'buf%N=', buf%N
print *, 'bug in ', irp_here
stop '-1'
end if
end if
call select_connected(i_generator, energy, pt2_data, buf, subset, pt2_F(i_generator))
endif
integer, external :: task_done_to_taskserver
if(done .or. ctask == size(task_id)) then
do i=1, ctask
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
call usleep(100)
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id(i)) == -1) then
ctask = 0
done = .true.
exit
endif
endif
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
call pt2_dealloc(pt2_data)
call pt2_alloc(pt2_data,N_states)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
end if
if(done) exit
ctask = ctask + 1
end do
if(ctask > 0) then
call sort_selection_buffer(buf)
! call merge_selection_buffers(buf,buf2)
call push_selection_results(zmq_socket_push, pt2_data, buf, task_id(1), ctask)
! buf%mini = buf2%mini
buf%cur = 0
end if
ctask = 0
call pt2_dealloc(pt2_data)
integer, external :: disconnect_from_taskserver
if (disconnect_from_taskserver(zmq_to_qp_run_socket,worker_id) == -1) then
continue
endif
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
call end_zmq_push_socket(zmq_socket_push,thread)
if (buffer_ready) then
call delete_selection_buffer(buf)
! call delete_selection_buffer(buf2)
endif
end subroutine
subroutine push_selection_results(zmq_socket_push, pt2_data, b, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_push
type(pt2_type), intent(in) :: pt2_data
type(selection_buffer), intent(inout) :: b
integer, intent(in) :: ntasks, task_id(*)
integer :: rc
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, b%cur, 4, ZMQ_SNDMORE)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
call pt2_serialize(pt2_data,N_states,pt2_serialized)
rc = f77_zmq_send( zmq_socket_push, pt2_serialized, size(pt2_serialized)*8, ZMQ_SNDMORE)
if (rc == -1) then
print *, irp_here, ': error sending result'
stop 3
return
else if(rc /= size(pt2_serialized)*8) then
stop 'push'
endif
deallocate(pt2_serialized)
if (b%cur > 0) then
rc = f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)
if(rc /= 8*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%val(1), 8*b%cur, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)
if(rc /= bit_kind*N_int*2*b%cur) then
print *, 'f77_zmq_send( zmq_socket_push, b%det(1,1,1), bit_kind*N_int*2*b%cur, ZMQ_SNDMORE)'
endif
endif
rc = f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)
if(rc /= 4) then
print *, 'f77_zmq_send( zmq_socket_push, ntasks, 4, ZMQ_SNDMORE)'
endif
rc = f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_send( zmq_socket_push, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_push is a REQ
IRP_IF ZMQ_PUSH
IRP_ELSE
character*(2) :: ok
rc = f77_zmq_recv( zmq_socket_push, ok, 2, 0)
if ((rc /= 2).and.(ok(1:2) /= 'ok')) then
print *, irp_here//': error in receiving ok'
stop -1
endif
IRP_ENDIF
end subroutine
subroutine pull_selection_results(zmq_socket_pull, pt2_data, val, det, N, task_id, ntasks)
use f77_zmq
use selection_types
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
type(pt2_type), intent(inout) :: pt2_data
double precision, intent(out) :: val(*)
integer(bit_kind), intent(out) :: det(N_int, 2, *)
integer, intent(out) :: N, ntasks, task_id(*)
integer :: rc, rn, i
double precision, allocatable :: pt2_serialized(:)
rc = f77_zmq_recv( zmq_socket_pull, N, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, N, 4, 0)'
endif
allocate(pt2_serialized (pt2_type_size(N_states)) )
rc = f77_zmq_recv( zmq_socket_pull, pt2_serialized, 8*size(pt2_serialized), 0)
if (rc == -1) then
ntasks = 1
task_id(1) = 0
else if(rc /= 8*size(pt2_serialized)) then
stop 'pull'
endif
call pt2_deserialize(pt2_data,N_states,pt2_serialized)
deallocate(pt2_serialized)
if (N>0) then
rc = f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)
if(rc /= 8*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, val(1), 8*N, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)
if(rc /= bit_kind*N_int*2*N) then
print *, 'f77_zmq_recv( zmq_socket_pull, det(1,1,1), bit_kind*N_int*2*N, 0)'
endif
endif
rc = f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)
if(rc /= 4) then
print *, 'f77_zmq_recv( zmq_socket_pull, ntasks, 4, 0)'
endif
rc = f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)
if(rc /= 4*ntasks) then
print *, 'f77_zmq_recv( zmq_socket_pull, task_id(1), ntasks*4, 0)'
endif
! Activate is zmq_socket_pull is a REP
IRP_IF ZMQ_PUSH
IRP_ELSE
rc = f77_zmq_send( zmq_socket_pull, 'ok', 2, 0)
if (rc /= 2) then
print *, irp_here//': error in sending ok'
stop -1
endif
IRP_ENDIF
end subroutine

View File

@ -303,10 +303,11 @@ subroutine run_slave_main
PROVIDE global_selection_buffer pt2_N_teeth pt2_F N_det_generators
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp
PROVIDE psi_det_hii selection_weight pseudo_sym pt2_min_parallel_tasks
call provide_for_zmq_pt2
if (mpi_master) then
print *, 'Running PT2'