mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-18 11:23:38 +01:00
cleaning in dft
This commit is contained in:
parent
9d2d00f040
commit
f4fa819249
@ -1,3 +1,51 @@
|
|||||||
==========================
|
==========================
|
||||||
The core modules of the QP
|
The core modules of the QP
|
||||||
==========================
|
==========================
|
||||||
|
|
||||||
|
*** How are handled the DFT functionals in QP2 ?
|
||||||
|
================================================
|
||||||
|
The Exchange and Correlation energies/potentials can be accessed by the following providers
|
||||||
|
energy_x
|
||||||
|
energy_c
|
||||||
|
potential_x_alpha_ao
|
||||||
|
potential_c_alpha_ao
|
||||||
|
potential_x_beta_ao
|
||||||
|
potential_c_beta_ao
|
||||||
|
|
||||||
|
These providers are automatically linked to the providers of the actual exchange/correlation energies of a given functional
|
||||||
|
through the character keywords
|
||||||
|
"exchange_functional"
|
||||||
|
"correlation_functional"
|
||||||
|
|
||||||
|
All the providers for the available functionals are in the folder "functionals", with one file "my_functional.irp.f" per functional.
|
||||||
|
|
||||||
|
Ex : if "exchange_functional" == "sr_pbe", then energy_x will contain the exchange correlation functional defined in "functiona/sr_pbe.irp.f", which corresponds to the short-range PBE functional (at the value mu_erf for the range separation parameter)
|
||||||
|
|
||||||
|
|
||||||
|
*** How are handled the DFT functionals in QP2 ?
|
||||||
|
================================================
|
||||||
|
|
||||||
|
Creating a new functional and propagating it through the whole QP2 programs is easy as all dependencies are handled by a script.
|
||||||
|
|
||||||
|
To do so, let us assume that the name of your functional is "my_func".
|
||||||
|
Then you just have to create the file "my_func.irp.f" in the folder "functional" which shoud contain
|
||||||
|
|
||||||
|
+) if you're adding an exchange functional, then create the provider "energy_x_my_func"
|
||||||
|
|
||||||
|
+) if you're adding a correlation functional, create the provider "energy_c_my_func"
|
||||||
|
|
||||||
|
+) if you want to add the echange potentials, create the providers "potential_x_alpha_ao_my_func", "potential_x_beta_ao_my_func" which are the exchange potentials on the AO basis for the alpha/beta electrons
|
||||||
|
|
||||||
|
+) if you want to add the correlation potentials, create the providers "potential_c_alpha_ao_my_func", "potential_c_beta_ao_my_func" which are the correlation potentials on the AO basis for the alpha/beta electrons
|
||||||
|
|
||||||
|
That's all :)
|
||||||
|
|
||||||
|
Then, when running whatever DFT calculation or accessing/using the providers:
|
||||||
|
energy_x
|
||||||
|
energy_c
|
||||||
|
potential_x_alpha_ao
|
||||||
|
potential_c_alpha_ao
|
||||||
|
potential_x_beta_ao
|
||||||
|
potential_c_beta_ao
|
||||||
|
|
||||||
|
if exchange_functional = mu_func, then you will automatically have access to what you need, such as kohn sham orbital optimization and so on ...
|
||||||
|
@ -1,58 +1,32 @@
|
|||||||
|
|
||||||
subroutine GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, &
|
subroutine GGA_sr_type_functionals(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, &
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, &
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, &
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! routine that helps in building the x/c potentials on the AO basis for a GGA functional with a short-range interaction
|
! routine that helps in building the x/c potentials on the AO basis for a GGA functional with a short-range interaction
|
||||||
END_DOC
|
END_DOC
|
||||||
double precision, intent(in) :: r(3),rho_a(N_states),rho_b(N_states),grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states)
|
double precision, intent(in) :: mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
||||||
double precision, intent(out) :: ex(N_states),vx_rho_a(N_states),vx_rho_b(N_states),vx_grad_rho_a_2(N_states),vx_grad_rho_b_2(N_states),vx_grad_rho_a_b(N_states)
|
double precision, intent(out) :: ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b
|
||||||
double precision, intent(out) :: ec(N_states),vc_rho_a(N_states),vc_rho_b(N_states),vc_grad_rho_a_2(N_states),vc_grad_rho_b_2(N_states),vc_grad_rho_a_b(N_states)
|
double precision, intent(out) :: ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b
|
||||||
integer :: istate
|
|
||||||
double precision :: r2(3),dr2(3), local_potential,r12,dx2,mu
|
|
||||||
do istate = 1, N_states
|
|
||||||
call ex_pbe_sr(mu_erf_dft,rho_a(istate),rho_b(istate),grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),ex(istate),vx_rho_a(istate),vx_rho_b(istate),vx_grad_rho_a_2(istate),vx_grad_rho_b_2(istate),vx_grad_rho_a_b(istate))
|
|
||||||
|
|
||||||
double precision :: rhoc,rhoo,sigmacc,sigmaco,sigmaoo,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo
|
|
||||||
! convertion from (alpha,beta) formalism to (closed, open) formalism
|
|
||||||
call rho_ab_to_rho_oc(rho_a(istate),rho_b(istate),rhoo,rhoc)
|
|
||||||
call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),sigmaoo,sigmacc,sigmaco)
|
|
||||||
|
|
||||||
call ec_pbe_sr(mu_erf_dft,rhoc,rhoo,sigmacc,sigmaco,sigmaoo,ec(istate),vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo)
|
|
||||||
|
|
||||||
call v_rho_oc_to_v_rho_ab(vrhoo,vrhoc,vc_rho_a(istate),vc_rho_b(istate))
|
|
||||||
call v_grad_rho_oc_to_v_grad_rho_ab(vsigmaoo,vsigmacc,vsigmaco,vc_grad_rho_a_2(istate),vc_grad_rho_b_2(istate),vc_grad_rho_a_b(istate))
|
|
||||||
enddo
|
|
||||||
end
|
|
||||||
|
|
||||||
|
|
||||||
subroutine GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, &
|
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, &
|
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! routine that helps in building the x/c potentials on the AO basis for a GGA functional
|
|
||||||
END_DOC
|
|
||||||
double precision, intent(in) :: r(3),rho_a(N_states),rho_b(N_states),grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states)
|
|
||||||
double precision, intent(out) :: ex(N_states),vx_rho_a(N_states),vx_rho_b(N_states),vx_grad_rho_a_2(N_states),vx_grad_rho_b_2(N_states),vx_grad_rho_a_b(N_states)
|
|
||||||
double precision, intent(out) :: ec(N_states),vc_rho_a(N_states),vc_rho_b(N_states),vc_grad_rho_a_2(N_states),vc_grad_rho_b_2(N_states),vc_grad_rho_a_b(N_states)
|
|
||||||
integer :: istate
|
integer :: istate
|
||||||
double precision :: r2(3),dr2(3), local_potential,r12,dx2
|
double precision :: r2(3),dr2(3), local_potential,r12,dx2
|
||||||
double precision :: mu_local
|
|
||||||
mu_local = 1.d-9
|
|
||||||
do istate = 1, N_states
|
|
||||||
call ex_pbe_sr(mu_local,rho_a(istate),rho_b(istate),grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),ex(istate),vx_rho_a(istate),vx_rho_b(istate),vx_grad_rho_a_2(istate),vx_grad_rho_b_2(istate),vx_grad_rho_a_b(istate))
|
|
||||||
|
|
||||||
double precision :: rhoc,rhoo,sigmacc,sigmaco,sigmaoo,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo
|
double precision :: rhoc,rhoo,sigmacc,sigmaco,sigmaoo,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo
|
||||||
|
|
||||||
|
! exhange energy and potentials
|
||||||
|
call ex_pbe_sr(mu,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b,ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b)
|
||||||
|
|
||||||
! convertion from (alpha,beta) formalism to (closed, open) formalism
|
! convertion from (alpha,beta) formalism to (closed, open) formalism
|
||||||
call rho_ab_to_rho_oc(rho_a(istate),rho_b(istate),rhoo,rhoc)
|
call rho_ab_to_rho_oc(rho_a,rho_b,rhoo,rhoc)
|
||||||
call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2(istate),grad_rho_b_2(istate),grad_rho_a_b(istate),sigmaoo,sigmacc,sigmaco)
|
call grad_rho_ab_to_grad_rho_oc(grad_rho_a_2,grad_rho_b_2,grad_rho_a_b,sigmaoo,sigmacc,sigmaco)
|
||||||
|
|
||||||
call ec_pbe_sr(mu_local,rhoc,rhoo,sigmacc,sigmaco,sigmaoo,ec(istate),vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo)
|
! correlation energy and potentials
|
||||||
|
call ec_pbe_sr(mu,rhoc,rhoo,sigmacc,sigmaco,sigmaoo,ec,vrhoc,vrhoo,vsigmacc,vsigmaco,vsigmaoo)
|
||||||
|
|
||||||
call v_rho_oc_to_v_rho_ab(vrhoo,vrhoc,vc_rho_a(istate),vc_rho_b(istate))
|
! convertion from (closed, open) formalism to (alpha,beta) formalism
|
||||||
call v_grad_rho_oc_to_v_grad_rho_ab(vsigmaoo,vsigmacc,vsigmaco,vc_grad_rho_a_2(istate),vc_grad_rho_b_2(istate),vc_grad_rho_a_b(istate))
|
call v_rho_oc_to_v_rho_ab(vrhoo,vrhoc,vc_rho_a,vc_rho_b)
|
||||||
enddo
|
call v_grad_rho_oc_to_v_grad_rho_ab(vsigmaoo,vsigmacc,vsigmaco,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
|
@ -6,7 +6,6 @@
|
|||||||
! exchange/correlation energy with the short range pbe functional
|
! exchange/correlation energy with the short range pbe functional
|
||||||
END_DOC
|
END_DOC
|
||||||
integer :: istate,i,j,m
|
integer :: istate,i,j,m
|
||||||
double precision :: r(3)
|
|
||||||
double precision :: mu,weight
|
double precision :: mu,weight
|
||||||
double precision, allocatable :: ex(:), ec(:)
|
double precision, allocatable :: ex(:), ec(:)
|
||||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||||||
@ -22,9 +21,6 @@
|
|||||||
energy_x_pbe = 0.d0
|
energy_x_pbe = 0.d0
|
||||||
do istate = 1, N_states
|
do istate = 1, N_states
|
||||||
do i = 1, n_points_final_grid
|
do i = 1, n_points_final_grid
|
||||||
r(1) = final_grid_points(1,i)
|
|
||||||
r(2) = final_grid_points(2,i)
|
|
||||||
r(3) = final_grid_points(3,i)
|
|
||||||
weight = final_weight_at_r_vector(i)
|
weight = final_weight_at_r_vector(i)
|
||||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||||
@ -40,7 +36,7 @@
|
|||||||
enddo
|
enddo
|
||||||
|
|
||||||
! inputs
|
! inputs
|
||||||
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||||
energy_x_pbe += ex * weight
|
energy_x_pbe += ex * weight
|
||||||
@ -56,7 +52,6 @@ BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
|
|||||||
! exchange/correlation energy with the short range pbe functional
|
! exchange/correlation energy with the short range pbe functional
|
||||||
END_DOC
|
END_DOC
|
||||||
integer :: istate,i,j,m
|
integer :: istate,i,j,m
|
||||||
double precision :: r(3)
|
|
||||||
double precision :: mu,weight
|
double precision :: mu,weight
|
||||||
double precision, allocatable :: ex(:), ec(:)
|
double precision, allocatable :: ex(:), ec(:)
|
||||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||||||
@ -72,9 +67,6 @@ BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
|
|||||||
energy_c_pbe = 0.d0
|
energy_c_pbe = 0.d0
|
||||||
do istate = 1, N_states
|
do istate = 1, N_states
|
||||||
do i = 1, n_points_final_grid
|
do i = 1, n_points_final_grid
|
||||||
r(1) = final_grid_points(1,i)
|
|
||||||
r(2) = final_grid_points(2,i)
|
|
||||||
r(3) = final_grid_points(3,i)
|
|
||||||
weight = final_weight_at_r_vector(i)
|
weight = final_weight_at_r_vector(i)
|
||||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||||
@ -90,7 +82,7 @@ BEGIN_PROVIDER[double precision, energy_c_pbe, (N_states) ]
|
|||||||
enddo
|
enddo
|
||||||
|
|
||||||
! inputs
|
! inputs
|
||||||
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||||
energy_c_pbe += ec * weight
|
energy_c_pbe += ec * weight
|
||||||
@ -159,7 +151,6 @@ END_PROVIDER
|
|||||||
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||||
END_DOC
|
END_DOC
|
||||||
integer :: istate,i,j,m
|
integer :: istate,i,j,m
|
||||||
double precision :: r(3)
|
|
||||||
double precision :: mu,weight
|
double precision :: mu,weight
|
||||||
double precision, allocatable :: ex(:), ec(:)
|
double precision, allocatable :: ex(:), ec(:)
|
||||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
||||||
@ -179,9 +170,6 @@ END_PROVIDER
|
|||||||
|
|
||||||
do istate = 1, N_states
|
do istate = 1, N_states
|
||||||
do i = 1, n_points_final_grid
|
do i = 1, n_points_final_grid
|
||||||
r(1) = final_grid_points(1,i)
|
|
||||||
r(2) = final_grid_points(2,i)
|
|
||||||
r(3) = final_grid_points(3,i)
|
|
||||||
weight = final_weight_at_r_vector(i)
|
weight = final_weight_at_r_vector(i)
|
||||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||||
@ -197,7 +185,7 @@ END_PROVIDER
|
|||||||
enddo
|
enddo
|
||||||
|
|
||||||
! inputs
|
! inputs
|
||||||
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||||
vx_rho_a(istate) *= weight
|
vx_rho_a(istate) *= weight
|
||||||
@ -325,63 +313,54 @@ END_PROVIDER
|
|||||||
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
! aos_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||||
END_DOC
|
END_DOC
|
||||||
integer :: istate,i,j,m
|
integer :: istate,i,j,m
|
||||||
double precision :: r(3)
|
|
||||||
double precision :: mu,weight
|
double precision :: mu,weight
|
||||||
double precision, allocatable :: ex(:), ec(:)
|
double precision :: ex, ec
|
||||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
||||||
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
|
||||||
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
||||||
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
||||||
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
|
||||||
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
|
||||||
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
|
||||||
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
|
||||||
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
|
|
||||||
|
|
||||||
aos_dvxc_alpha_pbe_w = 0.d0
|
aos_dvxc_alpha_pbe_w = 0.d0
|
||||||
aos_dvxc_beta_pbe_w = 0.d0
|
aos_dvxc_beta_pbe_w = 0.d0
|
||||||
|
|
||||||
do istate = 1, N_states
|
do istate = 1, N_states
|
||||||
do i = 1, n_points_final_grid
|
do i = 1, n_points_final_grid
|
||||||
r(1) = final_grid_points(1,i)
|
|
||||||
r(2) = final_grid_points(2,i)
|
|
||||||
r(3) = final_grid_points(3,i)
|
|
||||||
weight = final_weight_at_r_vector(i)
|
weight = final_weight_at_r_vector(i)
|
||||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||||
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||||
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||||
grad_rho_a_2 = 0.d0
|
grad_rho_a_2 = 0.d0
|
||||||
grad_rho_b_2 = 0.d0
|
grad_rho_b_2 = 0.d0
|
||||||
grad_rho_a_b = 0.d0
|
grad_rho_a_b = 0.d0
|
||||||
do m = 1, 3
|
do m = 1, 3
|
||||||
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
||||||
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
||||||
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
! inputs
|
! call exc_sr_pbe
|
||||||
call GGA_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
call GGA_sr_type_functionals(0.d0,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! inputs
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs exchange
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b ) ! outputs correlation
|
||||||
vx_rho_a(istate) *= weight
|
vx_rho_a *= weight
|
||||||
vc_rho_a(istate) *= weight
|
vc_rho_a *= weight
|
||||||
vx_rho_b(istate) *= weight
|
vx_rho_b *= weight
|
||||||
vc_rho_b(istate) *= weight
|
vc_rho_b *= weight
|
||||||
do m= 1,3
|
do m= 1,3
|
||||||
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m))
|
||||||
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m))
|
||||||
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m))
|
||||||
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m))
|
||||||
enddo
|
enddo
|
||||||
do j = 1, ao_num
|
do j = 1, ao_num
|
||||||
aos_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a(istate) + vx_rho_a(istate) ) * aos_in_r_array(j,i)
|
aos_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
|
||||||
aos_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b(istate) + vx_rho_b(istate) ) * aos_in_r_array(j,i)
|
aos_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
|
||||||
enddo
|
enddo
|
||||||
do j = 1, ao_num
|
do j = 1, ao_num
|
||||||
do m = 1,3
|
do m = 1,3
|
||||||
aos_dvxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m,istate) + contrib_grad_xa(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dvxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
aos_dvxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m,istate) + contrib_grad_xb(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dvxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
@ -3,55 +3,95 @@
|
|||||||
&BEGIN_PROVIDER[double precision, energy_c_sr_pbe, (N_states) ]
|
&BEGIN_PROVIDER[double precision, energy_c_sr_pbe, (N_states) ]
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
|
! exchange / correlation energies with the short-range version Perdew-Burke-Ernzerhof GGA functional
|
||||||
|
!
|
||||||
|
! defined in Chem. Phys.329, 276 (2006)
|
||||||
|
END_DOC
|
||||||
|
BEGIN_DOC
|
||||||
! exchange/correlation energy with the short range pbe functional
|
! exchange/correlation energy with the short range pbe functional
|
||||||
END_DOC
|
END_DOC
|
||||||
integer :: istate,i,j,m
|
integer :: istate,i,j,m
|
||||||
double precision :: r(3)
|
|
||||||
double precision :: mu,weight
|
double precision :: mu,weight
|
||||||
double precision, allocatable :: ex(:), ec(:)
|
double precision, allocatable :: ex, ec
|
||||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
||||||
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
||||||
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
||||||
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
|
||||||
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
|
||||||
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
|
||||||
|
|
||||||
|
|
||||||
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
|
||||||
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
|
||||||
energy_x_sr_pbe = 0.d0
|
energy_x_sr_pbe = 0.d0
|
||||||
energy_c_sr_pbe = 0.d0
|
energy_c_sr_pbe = 0.d0
|
||||||
do istate = 1, N_states
|
do istate = 1, N_states
|
||||||
do i = 1, n_points_final_grid
|
do i = 1, n_points_final_grid
|
||||||
r(1) = final_grid_points(1,i)
|
|
||||||
r(2) = final_grid_points(2,i)
|
|
||||||
r(3) = final_grid_points(3,i)
|
|
||||||
weight = final_weight_at_r_vector(i)
|
weight = final_weight_at_r_vector(i)
|
||||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||||
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||||
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||||
grad_rho_a_2 = 0.d0
|
grad_rho_a_2 = 0.d0
|
||||||
grad_rho_b_2 = 0.d0
|
grad_rho_b_2 = 0.d0
|
||||||
grad_rho_a_b = 0.d0
|
grad_rho_a_b = 0.d0
|
||||||
do m = 1, 3
|
do m = 1, 3
|
||||||
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
||||||
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
||||||
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
! inputs
|
! inputs
|
||||||
call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||||
energy_x_sr_pbe += ex * weight
|
energy_x_sr_pbe(istate) += ex * weight
|
||||||
energy_c_sr_pbe += ec * weight
|
energy_c_sr_pbe(istate) += ec * weight
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
||||||
|
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
||||||
|
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
||||||
|
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! exchange / correlation potential for alpha / beta electrons with the short-range version Perdew-Burke-Ernzerhof GGA functional
|
||||||
|
!
|
||||||
|
! defined in Chem. Phys.329, 276 (2006)
|
||||||
|
END_DOC
|
||||||
|
integer :: i,j,istate
|
||||||
|
do istate = 1, n_states
|
||||||
|
do i = 1, ao_num
|
||||||
|
do j = 1, ao_num
|
||||||
|
potential_x_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(i,j,istate)
|
||||||
|
potential_x_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(i,j,istate)
|
||||||
|
|
||||||
|
potential_c_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(i,j,istate)
|
||||||
|
potential_c_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(i,j,istate)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
||||||
|
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
|
||||||
|
END_DOC
|
||||||
|
integer :: i,j,istate
|
||||||
|
do istate = 1, n_states
|
||||||
|
do i = 1, ao_num
|
||||||
|
do j = 1, ao_num
|
||||||
|
potential_xc_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(i,j,istate)
|
||||||
|
potential_xc_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(i,j,istate)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
BEGIN_PROVIDER[double precision, aos_sr_vc_alpha_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||||
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
&BEGIN_PROVIDER[double precision, aos_sr_vc_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||||
@ -63,72 +103,64 @@ END_PROVIDER
|
|||||||
&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
&BEGIN_PROVIDER[double precision, aos_dsr_vx_beta_pbe_w , (ao_num,n_points_final_grid,N_states)]
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
|
! intermediates to compute the sr_pbe potentials
|
||||||
|
!
|
||||||
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||||
END_DOC
|
END_DOC
|
||||||
integer :: istate,i,j,m
|
integer :: istate,i,j,m
|
||||||
double precision :: r(3)
|
|
||||||
double precision :: mu,weight
|
double precision :: mu,weight
|
||||||
double precision, allocatable :: ex(:), ec(:)
|
double precision :: ex, ec
|
||||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
||||||
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
|
||||||
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
||||||
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
||||||
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
|
||||||
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
|
||||||
|
|
||||||
|
|
||||||
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
|
||||||
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
|
||||||
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
|
|
||||||
aos_dsr_vc_alpha_pbe_w= 0.d0
|
aos_dsr_vc_alpha_pbe_w= 0.d0
|
||||||
aos_dsr_vc_beta_pbe_w = 0.d0
|
aos_dsr_vc_beta_pbe_w = 0.d0
|
||||||
aos_dsr_vx_alpha_pbe_w= 0.d0
|
aos_dsr_vx_alpha_pbe_w= 0.d0
|
||||||
aos_dsr_vx_beta_pbe_w = 0.d0
|
aos_dsr_vx_beta_pbe_w = 0.d0
|
||||||
do istate = 1, N_states
|
do istate = 1, N_states
|
||||||
do i = 1, n_points_final_grid
|
do i = 1, n_points_final_grid
|
||||||
r(1) = final_grid_points(1,i)
|
|
||||||
r(2) = final_grid_points(2,i)
|
|
||||||
r(3) = final_grid_points(3,i)
|
|
||||||
weight = final_weight_at_r_vector(i)
|
weight = final_weight_at_r_vector(i)
|
||||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
|
||||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||||
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||||
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||||
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||||
grad_rho_a_2 = 0.d0
|
grad_rho_a_2 = 0.d0
|
||||||
grad_rho_b_2 = 0.d0
|
grad_rho_b_2 = 0.d0
|
||||||
grad_rho_a_b = 0.d0
|
grad_rho_a_b = 0.d0
|
||||||
do m = 1, 3
|
do m = 1, 3
|
||||||
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
||||||
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
||||||
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
! inputs
|
! inputs
|
||||||
call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||||
vx_rho_a(istate) *= weight
|
vx_rho_a *= weight
|
||||||
vc_rho_a(istate) *= weight
|
vc_rho_a *= weight
|
||||||
vx_rho_b(istate) *= weight
|
vx_rho_b *= weight
|
||||||
vc_rho_b(istate) *= weight
|
vc_rho_b *= weight
|
||||||
do m= 1,3
|
do m= 1,3
|
||||||
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
|
||||||
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
|
||||||
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
|
||||||
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
|
||||||
enddo
|
enddo
|
||||||
do j = 1, ao_num
|
do j = 1, ao_num
|
||||||
aos_sr_vc_alpha_pbe_w(j,i,istate) = vc_rho_a(istate) * aos_in_r_array(j,i)
|
aos_sr_vc_alpha_pbe_w(j,i,istate) = vc_rho_a * aos_in_r_array(j,i)
|
||||||
aos_sr_vc_beta_pbe_w (j,i,istate) = vc_rho_b(istate) * aos_in_r_array(j,i)
|
aos_sr_vc_beta_pbe_w (j,i,istate) = vc_rho_b * aos_in_r_array(j,i)
|
||||||
aos_sr_vx_alpha_pbe_w(j,i,istate) = vx_rho_a(istate) * aos_in_r_array(j,i)
|
aos_sr_vx_alpha_pbe_w(j,i,istate) = vx_rho_a * aos_in_r_array(j,i)
|
||||||
aos_sr_vx_beta_pbe_w (j,i,istate) = vx_rho_b(istate) * aos_in_r_array(j,i)
|
aos_sr_vx_beta_pbe_w (j,i,istate) = vx_rho_b * aos_in_r_array(j,i)
|
||||||
enddo
|
enddo
|
||||||
do j = 1, ao_num
|
do j = 1, ao_num
|
||||||
do m = 1,3
|
do m = 1,3
|
||||||
aos_dsr_vc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dsr_vc_alpha_pbe_w(j,i,istate) += contrib_grad_ca(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
aos_dsr_vc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dsr_vc_beta_pbe_w (j,i,istate) += contrib_grad_cb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
aos_dsr_vx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dsr_vx_alpha_pbe_w(j,i,istate) += contrib_grad_xa(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
aos_dsr_vx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m,istate) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dsr_vx_beta_pbe_w (j,i,istate) += contrib_grad_xb(m) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
@ -142,6 +174,8 @@ END_PROVIDER
|
|||||||
&BEGIN_PROVIDER [double precision, pot_sr_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
&BEGIN_PROVIDER [double precision, pot_sr_scal_x_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||||
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
&BEGIN_PROVIDER [double precision, pot_sr_scal_c_beta_ao_pbe, (ao_num,ao_num,N_states)]
|
||||||
implicit none
|
implicit none
|
||||||
|
! intermediates to compute the sr_pbe potentials
|
||||||
|
!
|
||||||
integer :: istate
|
integer :: istate
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
! intermediate quantity for the calculation of the vxc potentials for the GGA functionals related to the scalar part of the potential
|
||||||
@ -220,29 +254,6 @@ END_PROVIDER
|
|||||||
|
|
||||||
call wall_time(wall_2)
|
call wall_time(wall_2)
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, potential_x_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
||||||
&BEGIN_PROVIDER [double precision, potential_x_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
||||||
&BEGIN_PROVIDER [double precision, potential_c_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
||||||
&BEGIN_PROVIDER [double precision, potential_c_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
|
|
||||||
END_DOC
|
|
||||||
integer :: i,j,istate
|
|
||||||
do istate = 1, n_states
|
|
||||||
do i = 1, ao_num
|
|
||||||
do j = 1, ao_num
|
|
||||||
potential_x_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(j,i,istate) + pot_sr_grad_x_alpha_ao_pbe(i,j,istate)
|
|
||||||
potential_x_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(j,i,istate) + pot_sr_grad_x_beta_ao_pbe(i,j,istate)
|
|
||||||
|
|
||||||
potential_c_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(j,i,istate) + pot_sr_grad_c_alpha_ao_pbe(i,j,istate)
|
|
||||||
potential_c_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(j,i,istate) + pot_sr_grad_c_beta_ao_pbe(i,j,istate)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
|
|
||||||
@ -255,65 +266,54 @@ END_PROVIDER
|
|||||||
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
! aos_sr_vxc_alpha_pbe_w(j,i) = ao_i(r_j) * (v^x_alpha(r_j) + v^c_alpha(r_j)) * W(r_j)
|
||||||
END_DOC
|
END_DOC
|
||||||
integer :: istate,i,j,m
|
integer :: istate,i,j,m
|
||||||
double precision :: r(3)
|
|
||||||
double precision :: mu,weight
|
double precision :: mu,weight
|
||||||
double precision, allocatable :: ex(:), ec(:)
|
double precision :: ex, ec
|
||||||
double precision, allocatable :: rho_a(:),rho_b(:),grad_rho_a(:,:),grad_rho_b(:,:),grad_rho_a_2(:),grad_rho_b_2(:),grad_rho_a_b(:)
|
double precision :: rho_a,rho_b,grad_rho_a(3),grad_rho_b(3),grad_rho_a_2,grad_rho_b_2,grad_rho_a_b
|
||||||
double precision, allocatable :: contrib_grad_xa(:,:),contrib_grad_xb(:,:),contrib_grad_ca(:,:),contrib_grad_cb(:,:)
|
double precision :: contrib_grad_xa(3),contrib_grad_xb(3),contrib_grad_ca(3),contrib_grad_cb(3)
|
||||||
double precision, allocatable :: vc_rho_a(:), vc_rho_b(:), vx_rho_a(:), vx_rho_b(:)
|
double precision :: vc_rho_a, vc_rho_b, vx_rho_a, vx_rho_b
|
||||||
double precision, allocatable :: vx_grad_rho_a_2(:), vx_grad_rho_b_2(:), vx_grad_rho_a_b(:), vc_grad_rho_a_2(:), vc_grad_rho_b_2(:), vc_grad_rho_a_b(:)
|
double precision :: vx_grad_rho_a_2, vx_grad_rho_b_2, vx_grad_rho_a_b, vc_grad_rho_a_2, vc_grad_rho_b_2, vc_grad_rho_a_b
|
||||||
allocate(vc_rho_a(N_states), vc_rho_b(N_states), vx_rho_a(N_states), vx_rho_b(N_states))
|
|
||||||
allocate(vx_grad_rho_a_2(N_states), vx_grad_rho_b_2(N_states), vx_grad_rho_a_b(N_states), vc_grad_rho_a_2(N_states), vc_grad_rho_b_2(N_states), vc_grad_rho_a_b(N_states))
|
|
||||||
|
|
||||||
|
|
||||||
allocate(rho_a(N_states), rho_b(N_states),grad_rho_a(3,N_states),grad_rho_b(3,N_states))
|
|
||||||
allocate(grad_rho_a_2(N_states),grad_rho_b_2(N_states),grad_rho_a_b(N_states), ex(N_states), ec(N_states))
|
|
||||||
allocate(contrib_grad_xa(3,N_states),contrib_grad_xb(3,N_states),contrib_grad_ca(3,N_states),contrib_grad_cb(3,N_states))
|
|
||||||
|
|
||||||
aos_dsr_vxc_alpha_pbe_w = 0.d0
|
aos_dsr_vxc_alpha_pbe_w = 0.d0
|
||||||
aos_dsr_vxc_beta_pbe_w = 0.d0
|
aos_dsr_vxc_beta_pbe_w = 0.d0
|
||||||
|
|
||||||
do istate = 1, N_states
|
do istate = 1, N_states
|
||||||
do i = 1, n_points_final_grid
|
do i = 1, n_points_final_grid
|
||||||
r(1) = final_grid_points(1,i)
|
|
||||||
r(2) = final_grid_points(2,i)
|
|
||||||
r(3) = final_grid_points(3,i)
|
|
||||||
weight = final_weight_at_r_vector(i)
|
weight = final_weight_at_r_vector(i)
|
||||||
rho_a(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
rho_a = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||||
rho_b(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
rho_b = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||||
grad_rho_a(1:3,istate) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
grad_rho_a(1:3) = one_e_dm_and_grad_alpha_in_r(1:3,i,istate)
|
||||||
grad_rho_b(1:3,istate) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
grad_rho_b(1:3) = one_e_dm_and_grad_beta_in_r(1:3,i,istate)
|
||||||
grad_rho_a_2 = 0.d0
|
grad_rho_a_2 = 0.d0
|
||||||
grad_rho_b_2 = 0.d0
|
grad_rho_b_2 = 0.d0
|
||||||
grad_rho_a_b = 0.d0
|
grad_rho_a_b = 0.d0
|
||||||
do m = 1, 3
|
do m = 1, 3
|
||||||
grad_rho_a_2(istate) += grad_rho_a(m,istate) * grad_rho_a(m,istate)
|
grad_rho_a_2 += grad_rho_a(m) * grad_rho_a(m)
|
||||||
grad_rho_b_2(istate) += grad_rho_b(m,istate) * grad_rho_b(m,istate)
|
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
||||||
grad_rho_a_b(istate) += grad_rho_a(m,istate) * grad_rho_b(m,istate)
|
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
! inputs
|
! inputs
|
||||||
call GGA_sr_type_functionals(r,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||||
vx_rho_a(istate) *= weight
|
vx_rho_a *= weight
|
||||||
vc_rho_a(istate) *= weight
|
vc_rho_a *= weight
|
||||||
vx_rho_b(istate) *= weight
|
vx_rho_b *= weight
|
||||||
vc_rho_b(istate) *= weight
|
vc_rho_b *= weight
|
||||||
do m= 1,3
|
do m= 1,3
|
||||||
contrib_grad_ca(m,istate) = weight * (2.d0 * vc_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
contrib_grad_ca(m) = weight * (2.d0 * vc_grad_rho_a_2 * grad_rho_a(m) + vc_grad_rho_a_b * grad_rho_b(m) )
|
||||||
contrib_grad_xa(m,istate) = weight * (2.d0 * vx_grad_rho_a_2(istate) * grad_rho_a(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_b(m,istate))
|
contrib_grad_xa(m) = weight * (2.d0 * vx_grad_rho_a_2 * grad_rho_a(m) + vx_grad_rho_a_b * grad_rho_b(m) )
|
||||||
contrib_grad_cb(m,istate) = weight * (2.d0 * vc_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vc_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
contrib_grad_cb(m) = weight * (2.d0 * vc_grad_rho_b_2 * grad_rho_b(m) + vc_grad_rho_a_b * grad_rho_a(m) )
|
||||||
contrib_grad_xb(m,istate) = weight * (2.d0 * vx_grad_rho_b_2(istate) * grad_rho_b(m,istate) + vx_grad_rho_a_b(istate) * grad_rho_a(m,istate))
|
contrib_grad_xb(m) = weight * (2.d0 * vx_grad_rho_b_2 * grad_rho_b(m) + vx_grad_rho_a_b * grad_rho_a(m) )
|
||||||
enddo
|
enddo
|
||||||
do j = 1, ao_num
|
do j = 1, ao_num
|
||||||
aos_sr_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a(istate) + vx_rho_a(istate) ) * aos_in_r_array(j,i)
|
aos_sr_vxc_alpha_pbe_w(j,i,istate) = ( vc_rho_a + vx_rho_a ) * aos_in_r_array(j,i)
|
||||||
aos_sr_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b(istate) + vx_rho_b(istate) ) * aos_in_r_array(j,i)
|
aos_sr_vxc_beta_pbe_w (j,i,istate) = ( vc_rho_b + vx_rho_b ) * aos_in_r_array(j,i)
|
||||||
enddo
|
enddo
|
||||||
do j = 1, ao_num
|
do j = 1, ao_num
|
||||||
do m = 1,3
|
do m = 1,3
|
||||||
aos_dsr_vxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m,istate) + contrib_grad_xa(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dsr_vxc_alpha_pbe_w(j,i,istate) += ( contrib_grad_ca(m) + contrib_grad_xa(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
aos_dsr_vxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m,istate) + contrib_grad_xb(m,istate) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
aos_dsr_vxc_beta_pbe_w (j,i,istate) += ( contrib_grad_cb(m) + contrib_grad_xb(m) ) * aos_grad_in_r_array_transp_xyz(m,j,i)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
@ -378,20 +378,3 @@ END_PROVIDER
|
|||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, potential_xc_alpha_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
||||||
&BEGIN_PROVIDER [double precision, potential_xc_beta_ao_sr_pbe,(ao_num,ao_num,N_states)]
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! exchange / correlation potential for alpha / beta electrons with the Perdew-Burke-Ernzerhof GGA functional
|
|
||||||
END_DOC
|
|
||||||
integer :: i,j,istate
|
|
||||||
do istate = 1, n_states
|
|
||||||
do i = 1, ao_num
|
|
||||||
do j = 1, ao_num
|
|
||||||
potential_xc_alpha_ao_sr_pbe(j,i,istate) = pot_sr_scal_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(j,i,istate) + pot_sr_grad_xc_alpha_ao_pbe(i,j,istate)
|
|
||||||
potential_xc_beta_ao_sr_pbe(j,i,istate) = pot_sr_scal_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(j,i,istate) + pot_sr_grad_xc_beta_ao_pbe(i,j,istate)
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
|
|
||||||
END_PROVIDER
|
|
||||||
|
@ -11,7 +11,7 @@ function run() {
|
|||||||
qp edit --check
|
qp edit --check
|
||||||
qp reset --mos
|
qp reset --mos
|
||||||
qp run scf
|
qp run scf
|
||||||
qp set_frozen_core
|
# qp set_frozen_core
|
||||||
energy="$(ezfio get hartree_fock energy)"
|
energy="$(ezfio get hartree_fock energy)"
|
||||||
eq $energy $2 $thresh
|
eq $energy $2 $thresh
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user