9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-02 08:35:38 +01:00

Updated constant PT2 selection

This commit is contained in:
Anthony Scemama 2021-12-10 14:35:28 +01:00
parent f1b8d55474
commit f2e3a12c05
2 changed files with 15 additions and 11 deletions

View File

@ -38,11 +38,11 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
dt = 8.d0 !* selection_factor dt = 4.d0 !* selection_factor
do k=1,N_st do k=1,N_st
element = exp(dt*(pt2(k)/avg - 1.d0)) element = pt2(k) !exp(dt*(pt2(k)/avg - 1.d0))
element = min(2.0d0 , element) ! element = min(2.0d0 , element)
element = max(0.5d0 , element) ! element = max(0.5d0 , element)
pt2_match_weight(k) *= element pt2_match_weight(k) *= element
enddo enddo
@ -50,9 +50,9 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
do k=1,N_st do k=1,N_st
element = exp(dt*(variance(k)/avg -1.d0)) element = variance(k) ! exp(dt*(variance(k)/avg -1.d0))
element = min(2.0d0 , element) ! element = min(2.0d0 , element)
element = max(0.5d0 , element) ! element = max(0.5d0 , element)
variance_match_weight(k) *= element variance_match_weight(k) *= element
enddo enddo
@ -62,6 +62,9 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
variance_match_weight(:) = 1.d0 variance_match_weight(:) = 1.d0
endif endif
pt2_match_weight(:) = pt2_match_weight(:)/sum(pt2_match_weight(:))
variance_match_weight(:) = variance_match_weight(:)/sum(variance_match_weight(:))
threshold_davidson_pt2 = min(1.d-6, & threshold_davidson_pt2 = min(1.d-6, &
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) ) max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
@ -87,7 +90,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
selection_weight(1:N_states) = c0_weight(1:N_states) selection_weight(1:N_states) = c0_weight(1:N_states)
case (2) case (2)
print *, 'Using pt2-matching weight in selection' print *, 'Using PT2-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states) selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4) print *, '# PT2 weight ', real(pt2_match_weight(:),4)
@ -97,7 +100,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
print *, '# var weight ', real(variance_match_weight(:),4) print *, '# var weight ', real(variance_match_weight(:),4)
case (4) case (4)
print *, 'Using variance- and pt2-matching weights in selection' print *, 'Using variance- and PT2-matching weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
print *, '# PT2 weight ', real(pt2_match_weight(:),4) print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4) print *, '# var weight ', real(variance_match_weight(:),4)
@ -112,7 +115,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
selection_weight(1:N_states) = c0_weight(1:N_states) selection_weight(1:N_states) = c0_weight(1:N_states)
case (7) case (7)
print *, 'Input weights multiplied by variance- and pt2-matching' print *, 'Input weights multiplied by variance- and PT2-matching'
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states) selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4) print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4) print *, '# var weight ', real(variance_match_weight(:),4)
@ -128,6 +131,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
print *, '# var weight ', real(variance_match_weight(:),4) print *, '# var weight ', real(variance_match_weight(:),4)
end select end select
selection_weight(:) = selection_weight(:)/sum(selection_weight(:))
print *, '# Total weight ', real(selection_weight(:),4) print *, '# Total weight ', real(selection_weight(:),4)
END_PROVIDER END_PROVIDER

View File

@ -42,7 +42,7 @@ default: 2
[weight_selection] [weight_selection]
type: integer type: integer
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and rPT2 matching 8: input state-average multiplied by rPT2 matching 9: input state-average multiplied by variance matching doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: PT2 matching, 3: variance matching, 4: variance and PT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and PT2 matching 8: input state-average multiplied by PT2 matching 9: input state-average multiplied by variance matching
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 1 default: 1