mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-30 15:15:38 +01:00
Merge branch 'dev' of https://github.com/QuantumPackage/qp2 into dev
This commit is contained in:
commit
eb91084ee9
File diff suppressed because it is too large
Load Diff
@ -1,519 +1,195 @@
|
||||
HYDROGEN
|
||||
S 8
|
||||
1 23.843185 0.00411490
|
||||
2 10.212443 0.01046440
|
||||
3 4.374164 0.02801110
|
||||
4 1.873529 0.07588620
|
||||
5 0.802465 0.18210620
|
||||
6 0.343709 0.34852140
|
||||
7 0.147217 0.37823130
|
||||
8 0.063055 0.11642410
|
||||
! Obtained from
|
||||
! https://pseudopotentiallibrary.org
|
||||
|
||||
$DATA
|
||||
|
||||
POTASSIUM
|
||||
S 13
|
||||
1 33.190598 0.00093460
|
||||
2 17.266513 -0.01746080
|
||||
3 8.982438 0.15299840
|
||||
4 4.672871 -0.34050680
|
||||
5 2.430935 -0.22863440
|
||||
6 1.264628 0.22672980
|
||||
7 0.657889 0.54910420
|
||||
8 0.342249 0.42310450
|
||||
9 0.178046 0.09104080
|
||||
10 0.092623 0.00345520
|
||||
11 0.048185 -0.00028370
|
||||
12 0.025067 0.00055460
|
||||
13 0.013040 0.00000310
|
||||
S 13
|
||||
1 33.190598 -0.00013550
|
||||
2 17.266513 0.00327580
|
||||
3 8.982438 -0.03127550
|
||||
4 4.672871 0.07304500
|
||||
5 2.430935 0.04905170
|
||||
6 1.264628 -0.05320270
|
||||
7 0.657889 -0.13678160
|
||||
8 0.342249 -0.16629980
|
||||
9 0.178046 -0.15469740
|
||||
10 0.092623 0.00178980
|
||||
11 0.048185 0.40887000
|
||||
12 0.025067 0.56715150
|
||||
13 0.013040 0.18420760
|
||||
P 12
|
||||
1 25.955983 0.00005310
|
||||
2 12.863527 0.00359740
|
||||
3 6.375036 -0.04058580
|
||||
4 3.159405 -0.04220760
|
||||
5 1.565770 0.20965770
|
||||
6 0.775980 0.39509450
|
||||
7 0.384568 0.37504360
|
||||
8 0.190588 0.15682480
|
||||
9 0.094453 0.01966940
|
||||
10 0.046810 0.00125380
|
||||
11 0.023199 0.00029050
|
||||
12 0.011497 -0.00000980
|
||||
P 12
|
||||
1 25.955983 -0.00001130
|
||||
2 12.863527 -0.00050130
|
||||
3 6.375036 0.00601080
|
||||
4 3.159405 0.00570550
|
||||
5 1.565770 -0.03288980
|
||||
6 0.775980 -0.05912520
|
||||
7 0.384568 -0.06798030
|
||||
8 0.190588 -0.04852530
|
||||
9 0.094453 0.02182800
|
||||
10 0.046810 0.27827650
|
||||
11 0.023199 0.48640440
|
||||
12 0.011497 0.31832720
|
||||
D 11
|
||||
1 25.002828 0.00002860
|
||||
2 10.959775 -0.00030190
|
||||
3 4.804124 0.00482980
|
||||
4 2.105846 0.01402200
|
||||
5 0.923080 0.02589140
|
||||
6 0.404624 0.03605440
|
||||
7 0.177364 0.04862730
|
||||
8 0.077746 0.10242950
|
||||
9 0.034079 0.28114010
|
||||
10 0.014938 0.51238900
|
||||
11 0.006548 0.25265610
|
||||
S 1
|
||||
1 0.040680 1.00000000
|
||||
1 0.910504 1.00000000
|
||||
S 1
|
||||
1 0.139013 1.00000000
|
||||
1 0.538624 1.00000000
|
||||
S 1
|
||||
1 0.051786 1.00000000
|
||||
S 1
|
||||
1 0.019252 1.00000000
|
||||
S 1
|
||||
1 0.009626 1.00000000
|
||||
P 1
|
||||
1 0.166430 1.00000000
|
||||
1 0.479550 1.00000000
|
||||
P 1
|
||||
1 0.740212 1.00000000
|
||||
1 0.234482 1.00000000
|
||||
P 1
|
||||
1 0.027763 1.00000000
|
||||
P 1
|
||||
1 0.012100 1.00000000
|
||||
P 1
|
||||
1 0.006050 1.00000000
|
||||
D 1
|
||||
1 1.034207 1.00000000
|
||||
D 1
|
||||
1 0.013386 1.00000000
|
||||
D 1
|
||||
1 0.006693 1.00000000
|
||||
|
||||
SODIUM
|
||||
S 12
|
||||
1 50.364926 -0.00144900
|
||||
2 24.480199 -0.00059000
|
||||
3 11.898760 -0.11881800
|
||||
4 5.783470 -0.01085600
|
||||
5 2.811093 0.25078300
|
||||
6 1.366350 0.44727600
|
||||
7 0.664123 0.34725400
|
||||
8 0.322801 0.08065200
|
||||
9 0.156900 0.00120800
|
||||
10 0.076262 0.00040900
|
||||
11 0.037068 0.00011200
|
||||
12 0.018017 0.00007200
|
||||
S 12
|
||||
1 50.364926 0.00021200
|
||||
2 24.480199 0.00037900
|
||||
3 11.898760 0.01958200
|
||||
4 5.783470 0.00062300
|
||||
5 2.811093 -0.04578100
|
||||
6 1.366350 -0.08872800
|
||||
7 0.664123 -0.11295200
|
||||
8 0.322801 -0.10839600
|
||||
9 0.156900 0.00990100
|
||||
10 0.076262 0.35541800
|
||||
11 0.037068 0.56145100
|
||||
12 0.018017 0.19899800
|
||||
S 1
|
||||
1 0.073591 1.00000000
|
||||
S 1
|
||||
1 0.036796 1.00000000
|
||||
P 12
|
||||
1 77.769943 0.00005400
|
||||
2 42.060816 -0.00001600
|
||||
3 22.748020 0.01257100
|
||||
4 12.302957 0.07960100
|
||||
5 6.653887 0.14044200
|
||||
6 3.598664 0.21214100
|
||||
7 1.946289 0.26179900
|
||||
8 1.052624 0.25582000
|
||||
9 0.569297 0.18035900
|
||||
10 0.307897 0.07216500
|
||||
11 0.166522 0.01066300
|
||||
12 0.090061 0.00153800
|
||||
P 12
|
||||
1 77.769943 -0.00065600
|
||||
2 42.060816 0.00313700
|
||||
3 22.748020 -0.01100400
|
||||
4 12.302957 0.00937600
|
||||
5 6.653887 -0.06647900
|
||||
6 3.598664 0.05895900
|
||||
7 1.946289 -0.22105000
|
||||
8 1.052624 0.30349100
|
||||
9 0.569297 -0.67170500
|
||||
10 0.307897 1.06436000
|
||||
11 0.166522 -1.53048900
|
||||
12 0.090061 1.84316700
|
||||
P 1
|
||||
1 0.063647 1.00000000
|
||||
P 1
|
||||
1 0.031823 1.00000000
|
||||
D 1
|
||||
1 0.093145 1.00000000
|
||||
D 1
|
||||
1 0.046573 1.00000000
|
||||
|
||||
MAGNESIUM
|
||||
S 12
|
||||
1 63.931893 -0.00079400
|
||||
2 31.602596 0.00747900
|
||||
3 15.621687 -0.13624600
|
||||
4 7.722059 -0.03203300
|
||||
5 3.817142 0.21682300
|
||||
6 1.886877 0.45136400
|
||||
7 0.932714 0.37759900
|
||||
8 0.461056 0.09431900
|
||||
9 0.227908 0.00170300
|
||||
10 0.112659 0.00048500
|
||||
11 0.055689 -0.00015100
|
||||
12 0.027528 0.00003100
|
||||
S 12
|
||||
1 63.931893 0.00010600
|
||||
2 31.602596 -0.00108600
|
||||
3 15.621687 0.02867600
|
||||
4 7.722059 0.00578100
|
||||
5 3.817142 -0.05065300
|
||||
6 1.886877 -0.11687700
|
||||
7 0.932714 -0.16512100
|
||||
8 0.461056 -0.11801600
|
||||
9 0.227908 0.10836500
|
||||
10 0.112659 0.41475500
|
||||
11 0.055689 0.47763300
|
||||
12 0.027528 0.17347600
|
||||
S 1
|
||||
1 0.041150 1.00000000
|
||||
S 1
|
||||
1 0.020575 1.00000000
|
||||
P 12
|
||||
1 28.231094 0.01131700
|
||||
2 14.891993 0.08703900
|
||||
3 7.855575 0.16268300
|
||||
4 4.143841 0.24138600
|
||||
5 2.185889 0.29006400
|
||||
6 1.153064 0.25299100
|
||||
7 0.608245 0.13309700
|
||||
8 0.320851 0.02894100
|
||||
9 0.169250 0.00320900
|
||||
10 0.089280 0.00026800
|
||||
11 0.047095 0.00025700
|
||||
12 0.024843 -0.00003700
|
||||
P 12
|
||||
1 28.231094 -0.00182200
|
||||
2 14.891993 -0.01360300
|
||||
3 7.855575 -0.02570000
|
||||
4 4.143841 -0.03907600
|
||||
5 2.185889 -0.04877900
|
||||
6 1.153064 -0.04599000
|
||||
7 0.608245 -0.03165800
|
||||
8 0.320851 0.04917800
|
||||
9 0.169250 0.18690900
|
||||
10 0.089280 0.37939600
|
||||
11 0.047095 0.33543100
|
||||
12 0.024843 0.18405800
|
||||
P 1
|
||||
1 0.038365 1.00000000
|
||||
P 1
|
||||
1 0.019183 1.00000000
|
||||
D 1
|
||||
1 0.196017 1.00000000
|
||||
D 1
|
||||
1 0.098008 1.00000000
|
||||
|
||||
ALUMINUM
|
||||
S 12
|
||||
1 78.990577 -0.00048100
|
||||
2 39.484884 0.01309500
|
||||
3 19.737241 -0.14615300
|
||||
4 9.866021 -0.04520600
|
||||
5 4.931711 0.19070800
|
||||
6 2.465206 0.45320700
|
||||
7 1.232278 0.39882400
|
||||
8 0.615977 0.10364800
|
||||
9 0.307907 0.00224700
|
||||
10 0.153913 0.00079000
|
||||
11 0.076936 -0.00014000
|
||||
12 0.038458 0.00006400
|
||||
S 12
|
||||
1 78.990577 0.00002400
|
||||
2 39.484884 -0.00262700
|
||||
3 19.737241 0.03694800
|
||||
4 9.866021 0.01070500
|
||||
5 4.931711 -0.05334200
|
||||
6 2.465206 -0.14418800
|
||||
7 1.232278 -0.21396900
|
||||
8 0.615977 -0.12558500
|
||||
9 0.307907 0.19397000
|
||||
10 0.153913 0.48467400
|
||||
11 0.076936 0.41941400
|
||||
12 0.038458 0.11043000
|
||||
S 1
|
||||
1 0.062950 1.00000000
|
||||
S 1
|
||||
1 0.030399 1.00000000
|
||||
P 12
|
||||
1 33.993368 0.01190800
|
||||
2 17.617051 0.09748500
|
||||
3 9.130030 0.18047400
|
||||
4 4.731635 0.26552200
|
||||
5 2.452168 0.30797700
|
||||
6 1.270835 0.23506100
|
||||
7 0.658610 0.08963100
|
||||
8 0.341324 0.01108300
|
||||
9 0.176891 0.00157700
|
||||
10 0.091674 0.00000700
|
||||
11 0.047510 0.00021500
|
||||
12 0.024622 -0.00002200
|
||||
P 12
|
||||
1 33.993368 -0.00218300
|
||||
2 17.617051 -0.01736200
|
||||
3 9.130030 -0.03229200
|
||||
4 4.731635 -0.04981000
|
||||
5 2.452168 -0.05992600
|
||||
6 1.270835 -0.05255300
|
||||
7 0.658610 0.00198900
|
||||
8 0.341324 0.13005200
|
||||
9 0.176891 0.28008900
|
||||
10 0.091674 0.37433900
|
||||
11 0.047510 0.27285700
|
||||
12 0.024622 0.08514500
|
||||
P 1
|
||||
1 0.053015 1.00000000
|
||||
P 1
|
||||
1 0.014456 1.00000000
|
||||
D 1
|
||||
1 0.189387 1.00000000
|
||||
D 1
|
||||
1 0.053602 1.00000000
|
||||
|
||||
SILICON
|
||||
S 12
|
||||
1 96.651837 -0.00044000
|
||||
2 48.652547 0.01867100
|
||||
3 24.490692 -0.15435300
|
||||
4 12.328111 -0.05773800
|
||||
5 6.205717 0.16808700
|
||||
6 3.123831 0.45342800
|
||||
7 1.572472 0.41767500
|
||||
8 0.791550 0.11190100
|
||||
9 0.398450 0.00333700
|
||||
10 0.200572 0.00099500
|
||||
11 0.100964 -0.00003800
|
||||
12 0.050823 0.00006900
|
||||
S 12
|
||||
1 96.651837 -0.00000400
|
||||
2 48.652547 -0.00442100
|
||||
3 24.490692 0.04336200
|
||||
4 12.328111 0.01585300
|
||||
5 6.205717 -0.05170600
|
||||
6 3.123831 -0.16289500
|
||||
7 1.572472 -0.25021800
|
||||
8 0.791550 -0.12421600
|
||||
9 0.398450 0.24632500
|
||||
10 0.200572 0.50589900
|
||||
11 0.100964 0.38631400
|
||||
12 0.050823 0.08770100
|
||||
S 1
|
||||
1 0.086279 1.00000000
|
||||
S 1
|
||||
1 0.052598 1.00000000
|
||||
P 12
|
||||
1 40.315996 0.01293800
|
||||
2 21.171265 0.09812900
|
||||
3 11.117733 0.17932400
|
||||
4 5.838290 0.26388600
|
||||
5 3.065879 0.30927200
|
||||
6 1.609995 0.23274800
|
||||
7 0.845462 0.08590000
|
||||
8 0.443980 0.01026000
|
||||
9 0.233149 0.00156000
|
||||
10 0.122434 -0.00000300
|
||||
11 0.064294 0.00023200
|
||||
12 0.033763 -0.00002300
|
||||
P 12
|
||||
1 40.315996 0.00283300
|
||||
2 21.171265 0.02086900
|
||||
3 11.117733 0.03823600
|
||||
4 5.838290 0.05967900
|
||||
5 3.065879 0.07277600
|
||||
6 1.609995 0.06112900
|
||||
7 0.845462 -0.01677600
|
||||
8 0.443980 -0.17225900
|
||||
9 0.233149 -0.32119600
|
||||
10 0.122434 -0.36282800
|
||||
11 0.064294 -0.22078900
|
||||
12 0.033763 -0.05515200
|
||||
P 1
|
||||
1 0.079370 1.00000000
|
||||
P 1
|
||||
1 0.025699 1.00000000
|
||||
D 1
|
||||
1 0.274454 1.00000000
|
||||
D 1
|
||||
1 0.082112 1.00000000
|
||||
|
||||
PHOSPHORUS
|
||||
S 12
|
||||
1 269.443884 0.00005500
|
||||
2 127.601401 -0.00062400
|
||||
3 60.428603 0.01940000
|
||||
4 28.617367 -0.16550900
|
||||
5 13.552418 -0.05426500
|
||||
6 6.418062 0.25444000
|
||||
7 3.039422 0.54966100
|
||||
8 1.439389 0.32228500
|
||||
9 0.681656 0.02663200
|
||||
10 0.322814 0.00420300
|
||||
11 0.152876 -0.00123300
|
||||
12 0.072398 0.00049700
|
||||
S 12
|
||||
1 269.443884 0.00001800
|
||||
2 127.601401 -0.00002600
|
||||
3 60.428603 -0.00493300
|
||||
4 28.617367 0.05012000
|
||||
5 13.552418 0.01580100
|
||||
6 6.418062 -0.08446300
|
||||
7 3.039422 -0.24674200
|
||||
8 1.439389 -0.27632600
|
||||
9 0.681656 0.10027400
|
||||
10 0.322814 0.51720100
|
||||
11 0.152876 0.47975800
|
||||
12 0.072398 0.12409900
|
||||
S 1
|
||||
1 0.111116 1.00000000
|
||||
S 1
|
||||
1 0.070425 1.00000000
|
||||
P 12
|
||||
1 48.154282 0.01288400
|
||||
2 25.406431 0.09709500
|
||||
3 13.404555 0.17821500
|
||||
4 7.072308 0.26596400
|
||||
5 3.731384 0.31293300
|
||||
6 1.968696 0.23068600
|
||||
7 1.038693 0.08048900
|
||||
8 0.548020 0.00908500
|
||||
9 0.289138 0.00124800
|
||||
10 0.152550 -0.00006600
|
||||
11 0.080486 0.00012900
|
||||
12 0.042465 -0.00002900
|
||||
P 12
|
||||
1 48.154282 -0.00315200
|
||||
2 25.406431 -0.02300600
|
||||
3 13.404555 -0.04239800
|
||||
4 7.072308 -0.06747700
|
||||
5 3.731384 -0.08295200
|
||||
6 1.968696 -0.06602600
|
||||
7 1.038693 0.03446800
|
||||
8 0.548020 0.20901800
|
||||
9 0.289138 0.34717900
|
||||
10 0.152550 0.34480600
|
||||
11 0.080486 0.18173100
|
||||
12 0.042465 0.03664900
|
||||
P 1
|
||||
1 0.110006 1.00000000
|
||||
P 1
|
||||
1 0.032651 1.00000000
|
||||
D 1
|
||||
1 0.373518 1.00000000
|
||||
D 1
|
||||
1 0.111363 1.00000000
|
||||
|
||||
SULFUR
|
||||
S 12
|
||||
1 306.317903 0.00006400
|
||||
2 146.602801 -0.00078500
|
||||
3 70.163647 0.02247100
|
||||
4 33.580104 -0.16987100
|
||||
5 16.071334 -0.06189700
|
||||
6 7.691691 0.24003900
|
||||
7 3.681219 0.55164900
|
||||
8 1.761820 0.33438600
|
||||
9 0.843202 0.03132300
|
||||
10 0.403554 0.00443600
|
||||
11 0.193140 -0.00101500
|
||||
12 0.092436 0.00050700
|
||||
S 12
|
||||
1 306.317903 0.00002100
|
||||
2 146.602801 -0.00000400
|
||||
3 70.163647 -0.00611900
|
||||
4 33.580104 0.05447100
|
||||
5 16.071334 0.01934400
|
||||
6 7.691691 -0.08383900
|
||||
7 3.681219 -0.26532200
|
||||
8 1.761820 -0.29306500
|
||||
9 0.843202 0.11373000
|
||||
10 0.403554 0.52928200
|
||||
11 0.193140 0.46625400
|
||||
12 0.092436 0.12580000
|
||||
S 1
|
||||
1 0.138193 1.00000000
|
||||
S 1
|
||||
1 0.091639 1.00000000
|
||||
P 12
|
||||
1 55.148271 0.01344700
|
||||
2 29.056588 0.10167000
|
||||
3 15.309371 0.18519200
|
||||
4 8.066220 0.27583600
|
||||
5 4.249940 0.31707300
|
||||
6 2.239213 0.21706600
|
||||
7 1.179799 0.06576500
|
||||
8 0.621614 0.00651700
|
||||
9 0.327517 0.00111100
|
||||
10 0.172562 0.00022200
|
||||
11 0.090920 0.00018100
|
||||
12 0.047904 0.00000800
|
||||
P 12
|
||||
1 55.148271 0.00354200
|
||||
2 29.056588 0.02579700
|
||||
3 15.309371 0.04726000
|
||||
4 8.066220 0.07559400
|
||||
5 4.249940 0.09198000
|
||||
6 2.239213 0.06206700
|
||||
7 1.179799 -0.07125300
|
||||
8 0.621614 -0.25020600
|
||||
9 0.327517 -0.34929500
|
||||
10 0.172562 -0.31270000
|
||||
11 0.090920 -0.15589800
|
||||
12 0.047904 -0.03041800
|
||||
P 1
|
||||
1 0.132347 1.00000000
|
||||
P 1
|
||||
1 0.043576 1.00000000
|
||||
D 1
|
||||
1 0.480399 1.00000000
|
||||
D 1
|
||||
1 0.145431 1.00000000
|
||||
|
||||
CHLORINE
|
||||
S 10
|
||||
1 15.583847 0.002501
|
||||
2 8.858485 -0.010046
|
||||
3 5.035519 0.085810
|
||||
4 2.862391 -0.290136
|
||||
5 1.627098 -0.140314
|
||||
6 0.924908 0.146839
|
||||
7 0.525755 0.392484
|
||||
8 0.298860 0.425061
|
||||
9 0.169884 0.227195
|
||||
10 0.096569 0.059828
|
||||
S 1
|
||||
1 0.648040 1.000000
|
||||
S 1
|
||||
1 0.151979 1.000000
|
||||
P 10
|
||||
1 7.682894 -0.004609
|
||||
2 4.507558 -0.001798
|
||||
3 2.644587 -0.068614
|
||||
4 1.551581 0.062352
|
||||
5 0.910313 0.166337
|
||||
6 0.534081 0.282292
|
||||
7 0.313346 0.275967
|
||||
8 0.183840 0.241328
|
||||
9 0.107859 0.110223
|
||||
10 0.063281 0.040289
|
||||
P 1
|
||||
1 0.633351 1.000000
|
||||
P 1
|
||||
1 0.405005 1.000000
|
||||
D 1
|
||||
1 0.633222 1.000000
|
||||
D 1
|
||||
1 0.211734 1.000000
|
||||
|
||||
ARGON
|
||||
S 12
|
||||
1 400.805381 0.00009200
|
||||
2 194.251428 -0.00125400
|
||||
3 94.144487 0.02887900
|
||||
4 45.627384 -0.17710600
|
||||
5 22.113437 -0.07716500
|
||||
6 10.717338 0.21018700
|
||||
7 5.194187 0.55436900
|
||||
8 2.517377 0.35907000
|
||||
9 1.220054 0.04076900
|
||||
10 0.591302 0.00508700
|
||||
11 0.286576 -0.00064400
|
||||
12 0.138890 0.00053300
|
||||
S 12
|
||||
1 400.805381 0.00001900
|
||||
2 194.251428 0.00011400
|
||||
3 94.144487 -0.00869300
|
||||
4 45.627384 0.06117500
|
||||
5 22.113437 0.02679200
|
||||
6 10.717338 -0.07778000
|
||||
7 5.194187 -0.29074700
|
||||
8 2.517377 -0.32003600
|
||||
9 1.220054 0.12393300
|
||||
10 0.591302 0.53916300
|
||||
11 0.286576 0.45626000
|
||||
12 0.138890 0.13189200
|
||||
S 1
|
||||
1 0.200844 1.00000000
|
||||
S 1
|
||||
1 0.100422 1.00000000
|
||||
P 12
|
||||
1 71.845693 0.01423900
|
||||
2 38.318786 0.10317800
|
||||
3 20.437263 0.18518400
|
||||
4 10.900182 0.27635700
|
||||
5 5.813595 0.31813000
|
||||
6 3.100671 0.21149400
|
||||
7 1.653738 0.06192600
|
||||
8 0.882019 0.00582100
|
||||
9 0.470423 0.00083800
|
||||
10 0.250899 -0.00004700
|
||||
11 0.133817 0.00007700
|
||||
12 0.071371 -0.00001800
|
||||
P 12
|
||||
1 71.845693 0.00414500
|
||||
2 38.318786 0.02880000
|
||||
3 20.437263 0.05191600
|
||||
4 10.900182 0.08435600
|
||||
5 5.813595 0.10330300
|
||||
6 3.100671 0.05976300
|
||||
7 1.653738 -0.09852400
|
||||
8 0.882019 -0.27287100
|
||||
9 0.470423 -0.34211200
|
||||
10 0.250899 -0.28931700
|
||||
11 0.133817 -0.14332900
|
||||
12 0.071371 -0.03249500
|
||||
P 1
|
||||
1 0.205249 1.00000000
|
||||
P 1
|
||||
1 0.102624 1.00000000
|
||||
D 1
|
||||
1 0.745011 1.00000000
|
||||
D 1
|
||||
1 0.372505 1.00000000
|
||||
CALCIUM
|
||||
S 13
|
||||
1 38.909972 0.00094450
|
||||
2 20.573489 -0.01770900
|
||||
3 10.878148 0.14349340
|
||||
4 5.751777 -0.28035140
|
||||
5 3.041228 -0.28847700
|
||||
6 1.608037 0.17248640
|
||||
7 0.850243 0.55290080
|
||||
8 0.449563 0.46769880
|
||||
9 0.237704 0.09929150
|
||||
10 0.125685 0.00665130
|
||||
11 0.066456 -0.00192570
|
||||
12 0.035138 0.00096120
|
||||
13 0.018579 -0.00024390
|
||||
S 13
|
||||
1 38.909972 -0.00018310
|
||||
2 20.573489 0.00425520
|
||||
3 10.878148 -0.03727720
|
||||
4 5.751777 0.07704740
|
||||
5 3.041228 0.07822310
|
||||
6 1.608037 -0.05175260
|
||||
7 0.850243 -0.17462310
|
||||
8 0.449563 -0.25326320
|
||||
9 0.237704 -0.16061050
|
||||
10 0.125685 0.12654760
|
||||
11 0.066456 0.46487670
|
||||
12 0.035138 0.47840060
|
||||
13 0.018579 0.15642960
|
||||
P 12
|
||||
1 31.519451 -0.00013110
|
||||
2 15.831494 0.00581110
|
||||
3 7.951795 -0.04461000
|
||||
4 3.994003 -0.04239180
|
||||
5 2.006096 0.18028850
|
||||
6 1.007616 0.40747440
|
||||
7 0.506102 0.38646720
|
||||
8 0.254203 0.15452190
|
||||
9 0.127681 0.01706770
|
||||
10 0.064131 0.00315970
|
||||
11 0.032211 -0.00022470
|
||||
12 0.016179 0.00016830
|
||||
P 12
|
||||
1 31.519451 0.00002060
|
||||
2 15.831494 -0.00124550
|
||||
3 7.951795 0.01011140
|
||||
4 3.994003 0.00894270
|
||||
5 2.006096 -0.04458680
|
||||
6 1.007616 -0.09627520
|
||||
7 0.506102 -0.11300730
|
||||
8 0.254203 -0.06533320
|
||||
9 0.127681 0.14680910
|
||||
10 0.064131 0.44119800
|
||||
11 0.032211 0.42763180
|
||||
12 0.016179 0.12519670
|
||||
D 11
|
||||
1 28.997930 0.00227830
|
||||
2 13.712713 0.01197270
|
||||
3 6.484549 0.02273230
|
||||
4 3.066452 0.06997740
|
||||
5 1.450082 0.12588700
|
||||
6 0.685723 0.17597110
|
||||
7 0.324269 0.20962750
|
||||
8 0.153342 0.25661550
|
||||
9 0.072513 0.28874140
|
||||
10 0.034291 0.22477940
|
||||
11 0.016216 0.08294810
|
||||
S 1
|
||||
1 1.383790 1.00000000
|
||||
S 1
|
||||
1 0.701508 1.00000000
|
||||
S 1
|
||||
1 0.066369 1.00000000
|
||||
S 1
|
||||
1 0.026432 1.00000000
|
||||
S 1
|
||||
1 0.006700 1.00000000
|
||||
P 1
|
||||
1 0.563426 1.00000000
|
||||
P 1
|
||||
1 0.261483 1.00000000
|
||||
P 1
|
||||
1 0.076223 1.00000000
|
||||
P 1
|
||||
1 0.027633 1.00000000
|
||||
P 1
|
||||
1 0.005400 1.00000000
|
||||
D 1
|
||||
1 1.493098 1.00000000
|
||||
D 1
|
||||
1 0.050522 1.00000000
|
||||
D 1
|
||||
1 0.008800 1.00000000
|
||||
|
||||
SCANDIUM
|
||||
S 13
|
||||
@ -640,6 +316,20 @@ F 1
|
||||
1 0.083742 1.00000000
|
||||
F 1
|
||||
1 0.280673 1.00000000
|
||||
S 1
|
||||
1 0.531583 1.00000000
|
||||
S 1
|
||||
1 2.006315 1.00000000
|
||||
P 1
|
||||
1 0.608728 1.00000000
|
||||
P 1
|
||||
1 2.759507 1.00000000
|
||||
D 1
|
||||
1 1.412796 1.00000000
|
||||
D 1
|
||||
1 4.010741 1.00000000
|
||||
F 1
|
||||
1 1.670187 1.00000000
|
||||
|
||||
TITANIUM
|
||||
S 13
|
||||
@ -766,6 +456,20 @@ F 1
|
||||
1 0.146931 1.00000000
|
||||
F 1
|
||||
1 0.499717 1.00000000
|
||||
S 1
|
||||
1 0.591537 1.00000000
|
||||
S 1
|
||||
1 2.205011 1.00000000
|
||||
P 1
|
||||
1 0.675360 1.00000000
|
||||
P 1
|
||||
1 3.138882 1.00000000
|
||||
D 1
|
||||
1 1.759833 1.00000000
|
||||
D 1
|
||||
1 5.086016 1.00000000
|
||||
F 1
|
||||
1 2.117563 1.00000000
|
||||
|
||||
VANADIUM
|
||||
S 13
|
||||
@ -892,6 +596,20 @@ F 1
|
||||
1 0.308388 1.00000000
|
||||
F 1
|
||||
1 1.138450 1.00000000
|
||||
S 1
|
||||
1 0.736615 1.00000000
|
||||
S 1
|
||||
1 2.619861 1.00000000
|
||||
P 1
|
||||
1 0.973954 1.00000000
|
||||
P 1
|
||||
1 4.004062 1.00000000
|
||||
D 1
|
||||
1 0.749306 1.00000000
|
||||
D 1
|
||||
1 1.799378 1.00000000
|
||||
F 1
|
||||
1 3.352552 1.00000000
|
||||
|
||||
CHROMIUM
|
||||
S 13
|
||||
@ -1018,6 +736,20 @@ F 1
|
||||
1 0.311720 1.00000000
|
||||
F 1
|
||||
1 1.112997 1.00000000
|
||||
S 1
|
||||
1 0.734112 1.00000000
|
||||
S 1
|
||||
1 2.811823 1.00000000
|
||||
P 1
|
||||
1 0.851456 1.00000000
|
||||
P 1
|
||||
1 3.937167 1.00000000
|
||||
D 1
|
||||
1 0.845872 1.00000000
|
||||
D 1
|
||||
1 2.147155 1.00000000
|
||||
F 1
|
||||
1 3.530639 1.00000000
|
||||
|
||||
MANGANESE
|
||||
S 13
|
||||
@ -1144,6 +876,20 @@ F 1
|
||||
1 0.373591 1.00000000
|
||||
F 1
|
||||
1 1.357898 1.00000000
|
||||
S 1
|
||||
1 0.832852 1.00000000
|
||||
S 1
|
||||
1 3.133156 1.00000000
|
||||
P 1
|
||||
1 1.020743 1.00000000
|
||||
P 1
|
||||
1 4.582593 1.00000000
|
||||
D 1
|
||||
1 0.985022 1.00000000
|
||||
D 1
|
||||
1 2.435684 1.00000000
|
||||
F 1
|
||||
1 4.198704 1.00000000
|
||||
|
||||
IRON
|
||||
S 13
|
||||
@ -1270,6 +1016,20 @@ F 1
|
||||
1 0.463696 1.00000000
|
||||
F 1
|
||||
1 1.696126 1.00000000
|
||||
S 1
|
||||
1 0.909741 1.00000000
|
||||
S 1
|
||||
1 3.519995 1.00000000
|
||||
P 1
|
||||
1 1.151345 1.00000000
|
||||
P 1
|
||||
1 5.187368 1.00000000
|
||||
D 1
|
||||
1 1.172100 1.00000000
|
||||
D 1
|
||||
1 2.828034 1.00000000
|
||||
F 1
|
||||
1 5.078925 1.00000000
|
||||
|
||||
COBALT
|
||||
S 13
|
||||
@ -1396,6 +1156,20 @@ F 1
|
||||
1 0.557444 1.00000000
|
||||
F 1
|
||||
1 2.012568 1.00000000
|
||||
S 1
|
||||
1 1.010269 1.00000000
|
||||
S 1
|
||||
1 3.893671 1.00000000
|
||||
P 1
|
||||
1 1.270490 1.00000000
|
||||
P 1
|
||||
1 5.677091 1.00000000
|
||||
D 1
|
||||
1 1.291245 1.00000000
|
||||
D 1
|
||||
1 3.118104 1.00000000
|
||||
F 1
|
||||
1 5.891548 1.00000000
|
||||
|
||||
NICKEL
|
||||
S 13
|
||||
@ -1522,7 +1296,21 @@ F 1
|
||||
1 0.650562 1.00000000
|
||||
F 1
|
||||
1 2.317543 1.00000000
|
||||
|
||||
S 1
|
||||
1 1.099912 1.00000000
|
||||
S 1
|
||||
1 4.266474 1.00000000
|
||||
P 1
|
||||
1 1.398024 1.00000000
|
||||
P 1
|
||||
1 6.294441 1.00000000
|
||||
D 1
|
||||
1 1.406397 1.00000000
|
||||
D 1
|
||||
1 3.410393 1.00000000
|
||||
F 1
|
||||
1 6.722827 1.00000000
|
||||
|
||||
COPPER
|
||||
S 13
|
||||
1 104.471138 0.00074100
|
||||
@ -1648,6 +1436,20 @@ F 1
|
||||
1 0.771675 1.00000000
|
||||
F 1
|
||||
1 2.739578 1.00000000
|
||||
S 1
|
||||
1 1.218913 1.00000000
|
||||
S 1
|
||||
1 4.750059 1.00000000
|
||||
P 1
|
||||
1 1.551117 1.00000000
|
||||
P 1
|
||||
1 6.973554 1.00000000
|
||||
D 1
|
||||
1 1.873424 1.00000000
|
||||
D 1
|
||||
1 4.248371 1.00000000
|
||||
F 1
|
||||
1 6.750816 1.00000000
|
||||
|
||||
ZINC
|
||||
S 13
|
||||
@ -1774,4 +1576,19 @@ F 1
|
||||
1 0.893402 1.00000000
|
||||
F 1
|
||||
1 3.171936 1.00000000
|
||||
S 1
|
||||
1 1.375940 1.00000000
|
||||
S 1
|
||||
1 5.098898 1.00000000
|
||||
P 1
|
||||
1 1.706665 1.00000000
|
||||
P 1
|
||||
1 7.892989 1.00000000
|
||||
D 1
|
||||
1 2.029918 1.00000000
|
||||
D 1
|
||||
1 4.655140 1.00000000
|
||||
F 1
|
||||
1 8.867564 1.00000000
|
||||
|
||||
$END
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
4459
data/basis/aug-cc-pv5z_ecp_ccecp
Normal file
4459
data/basis/aug-cc-pv5z_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
2170
data/basis/aug-cc-pvdz_ecp_ccecp
Normal file
2170
data/basis/aug-cc-pvdz_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
3630
data/basis/aug-cc-pvqz_ecp_ccecp
Normal file
3630
data/basis/aug-cc-pvqz_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
2866
data/basis/aug-cc-pvtz_ecp_ccecp
Normal file
2866
data/basis/aug-cc-pvtz_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
3060
data/basis/cc-pcv5z_ecp_ccecp
Normal file
3060
data/basis/cc-pcv5z_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
1502
data/basis/cc-pcvdz_ecp_ccecp
Normal file
1502
data/basis/cc-pcvdz_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
4156
data/basis/cc-pv5z_ecp_ccecp
Normal file
4156
data/basis/cc-pv5z_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
3370
data/basis/cc-pvqz_ecp_ccecp
Normal file
3370
data/basis/cc-pvqz_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
2654
data/basis/cc-pvtz_ecp_ccecp
Normal file
2654
data/basis/cc-pvtz_ecp_ccecp
Normal file
File diff suppressed because it is too large
Load Diff
433
data/pseudo/ccecp
Normal file
433
data/pseudo/ccecp
Normal file
@ -0,0 +1,433 @@
|
||||
H GEN 0 1
|
||||
3
|
||||
1.00000000000000 1 21.24359508259891
|
||||
21.24359508259891 3 21.24359508259891
|
||||
-10.85192405303825 2 21.77696655044365
|
||||
1
|
||||
0.00000000000000 2 1.000000000000000
|
||||
|
||||
He GEN 0 1
|
||||
3
|
||||
2.000000 1 32.000000
|
||||
64.00000 3 32.000000
|
||||
-27.70084 2 33.713355
|
||||
1
|
||||
0.000000 2 1.0000000
|
||||
|
||||
Li GEN 2 1
|
||||
3
|
||||
1.000 1 15.0000000000000
|
||||
15.0000000000000 3 15.0479971422127
|
||||
-1.24272969818004 2 1.80605426846072
|
||||
1
|
||||
6.75286789026804 2 1.33024777689591
|
||||
|
||||
Be GEN 2 1
|
||||
4
|
||||
2 1 17.94900205362972
|
||||
35.89800410725944 3 24.13200289331664
|
||||
-12.77499846818315 2 20.13800265282147
|
||||
-2.96001382478467 2 4.333170937885760
|
||||
1
|
||||
12.66391859014478 2 2.487403700772570
|
||||
|
||||
B GEN 2 1
|
||||
3
|
||||
3.00000 1 31.49298
|
||||
94.47895 3 22.56509
|
||||
-9.74800 2 8.64669
|
||||
1
|
||||
20.74800 2 4.06246
|
||||
|
||||
C GEN 2 1
|
||||
3
|
||||
4.00000 1 14.43502
|
||||
57.74008 3 8.39889
|
||||
-25.81955 2 7.38188
|
||||
1
|
||||
52.13345 2 7.76079
|
||||
|
||||
N GEN 2 1
|
||||
6
|
||||
3.25000 1 12.91881
|
||||
1.75000 1 9.22825
|
||||
41.98612 3 12.96581
|
||||
16.14945 3 8.05477
|
||||
-26.09522 2 12.54876
|
||||
-10.32626 2 7.53360
|
||||
2
|
||||
34.77692 2 9.41609
|
||||
15.20330 2 8.16694
|
||||
|
||||
O GEN 2 1
|
||||
3
|
||||
6.000000 1 12.30997
|
||||
73.85984 3 14.76962
|
||||
-47.87600 2 13.71419
|
||||
1
|
||||
85.86406 2 13.65512
|
||||
|
||||
F GEN 2 1
|
||||
3
|
||||
7.0 1 12.08758490486192
|
||||
84.61309433403344 3 12.83806306400466
|
||||
-53.02751706539332 2 12.31234562699041
|
||||
1
|
||||
78.90177172847011 2 14.78076492090162
|
||||
|
||||
Ne GEN 2 1
|
||||
3
|
||||
8.000 1 14.79351199705315
|
||||
118.34809597642520 3 16.58203947626090
|
||||
-70.27885884380557 2 16.08073529218220
|
||||
1
|
||||
81.62205749824426 2 16.55441468334002
|
||||
|
||||
Na GEN 10 2
|
||||
3
|
||||
1.000000 1 4.311678
|
||||
4.311678 3 1.925689
|
||||
-2.083137 2 1.549498
|
||||
2
|
||||
6.234064 2 5.377666
|
||||
9.075931 2 1.408414
|
||||
2
|
||||
3.232724 2 1.379949
|
||||
2.494079 2 0.862453
|
||||
|
||||
Mg GEN 10 2
|
||||
3
|
||||
2.000000 1 6.048538
|
||||
12.097075 3 2.796989
|
||||
-17.108313 2 2.547408
|
||||
2
|
||||
6.428631 2 5.936017
|
||||
14.195491 2 1.592891
|
||||
2
|
||||
3.315069 2 1.583969
|
||||
4.403025 2 1.077297
|
||||
|
||||
Al GEN 10 2
|
||||
3
|
||||
3.000000 1 5.073893
|
||||
15.221680 3 8.607001
|
||||
-11.165685 2 3.027490
|
||||
2
|
||||
14.879513 2 7.863954
|
||||
20.746863 2 2.061358
|
||||
2
|
||||
7.786227 2 3.125175
|
||||
7.109015 2 1.414930
|
||||
|
||||
Si GEN 10 2
|
||||
3
|
||||
4.000000 1 5.168316
|
||||
20.673264 3 8.861690
|
||||
-14.818174 2 3.933474
|
||||
2
|
||||
14.832760 2 9.447023
|
||||
26.349664 2 2.553812
|
||||
2
|
||||
7.621400 2 3.660001
|
||||
10.331583 2 1.903653
|
||||
|
||||
P GEN 10 2
|
||||
3
|
||||
5.000000 1 5.872694
|
||||
29.363469 3 9.891298
|
||||
-17.011136 2 4.692469
|
||||
2
|
||||
15.259383 2 12.091334
|
||||
31.707918 2 3.044535
|
||||
2
|
||||
7.747190 2 4.310884
|
||||
13.932528 2 2.426903
|
||||
|
||||
S GEN 10 2
|
||||
3
|
||||
6.000000 1 6.151144
|
||||
36.906864 3 11.561575
|
||||
-19.819533 2 5.390961
|
||||
2
|
||||
15.925748 2 16.117687
|
||||
38.515895 2 3.608629
|
||||
2
|
||||
8.062221 2 6.228956
|
||||
18.737525 2 2.978074
|
||||
|
||||
Cl GEN 10 2
|
||||
3
|
||||
7.000000 1 7.944352
|
||||
55.610463 3 12.801261
|
||||
-22.860784 2 6.296744
|
||||
2
|
||||
15.839234 2 17.908432
|
||||
44.469504 2 4.159880
|
||||
2
|
||||
8.321946 2 7.931763
|
||||
24.044745 2 3.610412
|
||||
|
||||
Ar GEN 10 2
|
||||
3
|
||||
8.000000 1 8.317181
|
||||
66.537451 3 13.124648
|
||||
-24.100393 2 6.503132
|
||||
2
|
||||
18.910152 2 27.068139
|
||||
53.040012 2 4.801263
|
||||
2
|
||||
8.015534 2 11.135735
|
||||
28.220208 2 4.126631
|
||||
|
||||
K GEN 10 2
|
||||
4
|
||||
9.000 1 7.27386331637373
|
||||
65.46476984736357 3 11.1729834540799
|
||||
-10.84433558416271 2 7.70617523948938
|
||||
-15.96316084113368 2 5.62491694962345
|
||||
2
|
||||
11.86687269408012 2 11.4425076498453
|
||||
90.07677060151201 2 6.53712447768095
|
||||
2
|
||||
11.53420167311457 2 9.63121897030662
|
||||
27.72023517356577 2 4.50881062128081
|
||||
|
||||
Ca GEN 10 2
|
||||
4
|
||||
10.000 1 7.041331745291820
|
||||
70.41331745291820 3 14.01444871170631
|
||||
-92.87298019372959 2 13.76936244330539
|
||||
-5.753568238854550 2 4.717259669813990
|
||||
2
|
||||
149.3026232361631 2 11.24016734279034
|
||||
23.75932943609596 2 5.353611600469730
|
||||
2
|
||||
99.20411436357747 2 13.06654848325639
|
||||
13.45216129084917 2 4.027484971490170
|
||||
|
||||
Sc GEN 10 2
|
||||
4
|
||||
11.00000000 1 16.02394388
|
||||
176.26338271 3 14.08647403
|
||||
-83.68149599 2 11.93985121
|
||||
0.43282764 2 3.69440111
|
||||
2
|
||||
153.96530175 2 11.49466541
|
||||
14.93675657 2 5.01031394
|
||||
2
|
||||
97.21725690 2 11.45126730
|
||||
10.81704018 2 4.76798446
|
||||
|
||||
Ti GEN 10 2
|
||||
4
|
||||
12.00000000 1 18.41366202
|
||||
220.96394426 3 15.92292414
|
||||
-94.29025824 2 13.65000623
|
||||
0.09791142 2 5.09555210
|
||||
2
|
||||
173.94657235 2 12.70580613
|
||||
18.83768333 2 6.11178551
|
||||
2
|
||||
111.45672882 2 12.64091929
|
||||
11.17702682 2 5.35437415
|
||||
|
||||
V GEN 10 2
|
||||
4
|
||||
13.00000000 1 20.32168914
|
||||
264.18195885 3 19.59698040
|
||||
-115.29293208 2 17.33147348
|
||||
-0.66288726 2 5.12320657
|
||||
2
|
||||
195.56713891 2 15.12502150
|
||||
22.88642834 2 6.29898914
|
||||
2
|
||||
126.42119500 2 15.93855113
|
||||
16.03597127 2 5.74006266
|
||||
|
||||
Cr GEN 10 2
|
||||
4
|
||||
14.00000000 1 18.28091074
|
||||
255.93275041 3 17.09800655
|
||||
-132.01826317 2 16.72267276
|
||||
-0.77388761 2 5.02865105
|
||||
2
|
||||
219.48146209 2 16.90078760
|
||||
28.07933176 2 7.33662150
|
||||
2
|
||||
139.98396871 2 17.31974516
|
||||
19.54835786 2 6.92409757
|
||||
|
||||
Mn GEN 10 2
|
||||
4
|
||||
15.00000000 1 21.91937433
|
||||
328.79061500 3 21.35527127
|
||||
-162.05172805 2 21.27162653
|
||||
-1.82694272 2 7.93913962
|
||||
2
|
||||
244.66870492 2 18.92044965
|
||||
33.54162717 2 8.32764757
|
||||
2
|
||||
162.35033685 2 20.17347020
|
||||
24.17956695 2 7.80047874
|
||||
|
||||
Fe GEN 10 2
|
||||
4
|
||||
16.00000000 1 23.22091713
|
||||
371.53467417 3 23.54714679
|
||||
-181.22603445 2 23.47256344
|
||||
-2.37305236 2 9.85238815
|
||||
2
|
||||
277.50032547 2 22.21062697
|
||||
46.20495585 2 9.51515800
|
||||
2
|
||||
194.99875056 2 24.57000871
|
||||
31.67945132 2 8.86648776
|
||||
|
||||
Co GEN 10 2
|
||||
4
|
||||
17.00000000 1 25.00124115
|
||||
425.02109971 3 22.83490096
|
||||
-195.48211282 2 23.47468155
|
||||
-2.81572866 2 10.33794825
|
||||
2
|
||||
271.77708486 2 23.41427030
|
||||
54.26461121 2 10.76931694
|
||||
2
|
||||
201.53430745 2 25.47446316
|
||||
38.99231927 2 10.68404901
|
||||
|
||||
Ni GEN 10 2
|
||||
4
|
||||
18.000 1 2.82630001015327e+01
|
||||
508.7340018275886 3 2.69360254587070e+01
|
||||
-2.20099999296390e+02 2 2.70860075292970e+01
|
||||
-2.13493270999809e+00 2 1.22130001295874e+01
|
||||
2
|
||||
3.21240002430625e+02 2 2.64320193944270e+01
|
||||
6.03470084610628e+01 2 1.17489696842121e+01
|
||||
2
|
||||
2.36539998999428e+02 2 2.94929998193907e+01
|
||||
4.43969887908906e+01 2 1.15569831458722e+01
|
||||
|
||||
Cu GEN 10 2
|
||||
4
|
||||
19.00000000 1 31.53811263
|
||||
599.22413997 3 31.06925531
|
||||
-244.68915484 2 30.59035868
|
||||
-1.29349525 2 14.05141063
|
||||
2
|
||||
370.71371824 2 29.35562242
|
||||
66.27560813 2 12.77235919
|
||||
2
|
||||
271.66281028 2 33.51694543
|
||||
49.76265057 2 12.52471484
|
||||
|
||||
Zn GEN 10 2
|
||||
4
|
||||
20.00000000 1 35.80797616
|
||||
716.15952323 3 34.53646083
|
||||
-204.68393323 2 28.62830178
|
||||
0.76026614 2 7.96239682
|
||||
2
|
||||
431.70804302 2 35.02141356
|
||||
95.87640437 2 14.63498691
|
||||
2
|
||||
313.57770563 2 42.22979234
|
||||
74.01270048 2 14.57429304
|
||||
|
||||
Ga GEN 28 3
|
||||
4
|
||||
3.0 1 17.00473938158134
|
||||
51.01421814474402 3 14.99961796477555
|
||||
-39.00062591247301 2 11.99279249750992
|
||||
35.44659356093000 2 14.99282276192415
|
||||
2
|
||||
21.78930966695012 2 1.85781132082231
|
||||
-2.86685089713932 2 0.91950586478827
|
||||
2
|
||||
18.63985979160424 2 1.92030166263971
|
||||
-1.63369679761927 2 1.00895888918239
|
||||
2
|
||||
2.03523714898590 2 0.62750876923831
|
||||
-0.08532375682035 2 0.32619029984635
|
||||
|
||||
Ge GEN 28 3
|
||||
4
|
||||
4.0 1 1.478962662442
|
||||
5.9158506497680 3 3.188905647765
|
||||
-12.033712959815 2 1.927438978253
|
||||
1.283543489065 2 1.545539235916
|
||||
2
|
||||
43.265429324814 2 2.894473589836
|
||||
-1.909339873965 2 1.550339816290
|
||||
2
|
||||
35.263014141211 2 2.986528872039
|
||||
0.963439928853 2 1.283381203893
|
||||
2
|
||||
2.339019442484 2 1.043001142249
|
||||
0.541380654081 2 0.554562729807
|
||||
|
||||
As GEN 28 3
|
||||
4
|
||||
5.0 1 1.28593131534589
|
||||
6.429656576729450 3 9.93487432688877
|
||||
-15.01243900647766 2 1.89568153750512
|
||||
2.89881363078702 2 1.72825641453405
|
||||
2
|
||||
75.65519437230579 2 3.47938697518409
|
||||
-3.31145348709338 2 1.63747973017064
|
||||
2
|
||||
67.96186740640852 2 3.22936389274538
|
||||
-3.09455795155570 2 1.66636575135787
|
||||
2
|
||||
24.30473448724631 2 2.06816256325470
|
||||
0.93945624468575 2 1.54699940726544
|
||||
|
||||
Se GEN 28 3
|
||||
4
|
||||
6.0 1 2.97705189898323
|
||||
17.862311393899380 3 7.01667360591764
|
||||
-20.00913150638712 2 3.96066255032528
|
||||
10.00573531473560 2 5.02826321004214
|
||||
2
|
||||
71.37928031464314 2 4.17536331935161
|
||||
0.42619859321245 2 2.14491059745542
|
||||
2
|
||||
50.94828961394475 2 4.28772186507645
|
||||
5.54288117697892 2 2.09538253707367
|
||||
2
|
||||
6.20469719059516 2 1.39403720595047
|
||||
0.53395702862692 2 1.69659923150419
|
||||
|
||||
Br GEN 28 3
|
||||
4
|
||||
7.00000000000000 1 3.665770450000000
|
||||
25.6603931500000 3 5.293022720000000
|
||||
13.0402619252684 2 3.176376149835153
|
||||
-21.908838668870 2 2.897543523376016
|
||||
2
|
||||
85.8843473075379 2 4.971806723636273
|
||||
4.62125463404037 2 2.042687217782981
|
||||
2
|
||||
55.3617154916148 2 4.711839367430644
|
||||
11.0314096124871 2 2.384292508891309
|
||||
2
|
||||
26.4104098578207 2 3.412863477885576
|
||||
5.46873883641966 2 1.530284946887900
|
||||
|
||||
Kr GEN 28 3
|
||||
4
|
||||
8.0 1 10.79423805030976
|
||||
86.353904402478080 3 13.32338941541937
|
||||
-11.11453291523170 2 9.292050205053670
|
||||
10.22951903851239 2 20.14895793077237
|
||||
2
|
||||
92.88955174083402 2 5.49072858263344
|
||||
12.92947788650997 2 3.86301190150576
|
||||
2
|
||||
43.09952401633328 2 4.03857692489950
|
||||
9.50975957670500 2 3.30678898758958
|
||||
2
|
||||
17.80494496367218 2 4.21348003421066
|
||||
4.58911494794530 2 1.54989721316990
|
||||
|
263
data/pseudo/ncsu
263
data/pseudo/ncsu
@ -1,263 +0,0 @@
|
||||
H GEN 0 1
|
||||
3
|
||||
1.00000000000000 1 21.24359508259891
|
||||
21.24359508259891 3 21.24359508259891
|
||||
-10.85192405303825 2 21.77696655044365
|
||||
1
|
||||
0.00000000000000 2 1.000000000000000
|
||||
|
||||
B GEN 2 1
|
||||
3
|
||||
3.00000 1 31.49298
|
||||
94.47895 3 22.56509
|
||||
-9.74800 2 8.64669
|
||||
1
|
||||
20.74800 2 4.06246
|
||||
|
||||
C GEN 2 1
|
||||
3
|
||||
4.00000 1 14.43502
|
||||
57.74008 3 8.39889
|
||||
-25.81955 2 7.38188
|
||||
1
|
||||
52.13345 2 7.76079
|
||||
|
||||
N GEN 2 1
|
||||
6
|
||||
3.25000 1 12.91881
|
||||
1.75000 1 9.22825
|
||||
41.98612 3 12.96581
|
||||
16.14945 3 8.05477
|
||||
-26.09522 2 12.54876
|
||||
-10.32626 2 7.53360
|
||||
2
|
||||
34.77692 2 9.41609
|
||||
15.20330 2 8.16694
|
||||
|
||||
O GEN 2 1
|
||||
3
|
||||
6.000000 1 12.30997
|
||||
73.85984 3 14.76962
|
||||
-47.87600 2 13.71419
|
||||
1
|
||||
85.86406 2 13.65512
|
||||
|
||||
F GEN 2 1
|
||||
3
|
||||
7.0 1 11.3954401213
|
||||
79.7680808491 3 10.49201883
|
||||
-49.4990068225 2 10.2868054098
|
||||
1
|
||||
51.3934743997 2 11.3903478843
|
||||
|
||||
Na GEN 10 2
|
||||
3
|
||||
1.000000 1 4.311678
|
||||
4.311678 3 1.925689
|
||||
-2.083137 2 1.549498
|
||||
2
|
||||
6.234064 2 5.377666
|
||||
9.075931 2 1.408414
|
||||
2
|
||||
3.232724 2 1.379949
|
||||
2.494079 2 0.862453
|
||||
|
||||
Mg GEN 10 2
|
||||
3
|
||||
2.000000 1 6.048538
|
||||
12.097075 3 2.796989
|
||||
-17.108313 2 2.547408
|
||||
2
|
||||
6.428631 2 5.936017
|
||||
14.195491 2 1.592891
|
||||
2
|
||||
3.315069 2 1.583969
|
||||
4.403025 2 1.077297
|
||||
|
||||
Al GEN 2 1
|
||||
3
|
||||
11.000000 1 11.062056
|
||||
121.682619 3 12.369778
|
||||
-82.624567 2 11.965444
|
||||
2
|
||||
25.157259 2 81.815564
|
||||
113.067525 2 24.522883
|
||||
|
||||
Si GEN 10 2
|
||||
3
|
||||
4.000000 1 5.168316
|
||||
20.673264 3 8.861690
|
||||
-14.818174 2 3.933474
|
||||
2
|
||||
14.832760 2 9.447023
|
||||
26.349664 2 2.553812
|
||||
2
|
||||
7.621400 2 3.660001
|
||||
10.331583 2 1.903653
|
||||
|
||||
P GEN 2 1
|
||||
3
|
||||
13.000000 1 15.073300
|
||||
195.952906 3 18.113176
|
||||
-117.611086 2 17.371539
|
||||
2
|
||||
25.197230 2 101.982019
|
||||
189.426261 2 37.485881
|
||||
|
||||
S GEN 2 1
|
||||
3
|
||||
14.000000 1 17.977612
|
||||
251.686565 3 20.435964
|
||||
-135.538891 2 19.796579
|
||||
2
|
||||
25.243283 2 111.936344
|
||||
227.060768 2 43.941844
|
||||
|
||||
Cl GEN 2 1
|
||||
3
|
||||
15.000000 1 22.196266
|
||||
332.943994 3 26.145117
|
||||
-161.999982 2 25.015118
|
||||
2
|
||||
26.837357 2 124.640433
|
||||
277.296696 2 52.205433
|
||||
|
||||
Ar GEN 2 1
|
||||
3
|
||||
16.000000 1 23.431337
|
||||
374.901386 3 26.735872
|
||||
-178.039517 2 26.003325
|
||||
2
|
||||
25.069215 2 135.620522
|
||||
332.151842 2 60.471053
|
||||
|
||||
Sc GEN 10 2
|
||||
4
|
||||
11.00000000 1 16.02394388
|
||||
176.26338271 3 14.08647403
|
||||
-83.68149599 2 11.93985121
|
||||
0.43282764 2 3.69440111
|
||||
2
|
||||
153.96530175 2 11.49466541
|
||||
14.93675657 2 5.01031394
|
||||
2
|
||||
97.21725690 2 11.45126730
|
||||
10.81704018 2 4.76798446
|
||||
|
||||
Ti GEN 10 2
|
||||
4
|
||||
12.00000000 1 18.41366202
|
||||
220.96394426 3 15.92292414
|
||||
-94.29025824 2 13.65000623
|
||||
0.09791142 2 5.09555210
|
||||
2
|
||||
173.94657235 2 12.70580613
|
||||
18.83768333 2 6.11178551
|
||||
2
|
||||
111.45672882 2 12.64091929
|
||||
11.17702682 2 5.35437415
|
||||
|
||||
V GEN 10 2
|
||||
4
|
||||
13.00000000 1 20.32168914
|
||||
264.18195885 3 19.59698040
|
||||
-115.29293208 2 17.33147348
|
||||
-0.66288726 2 5.12320657
|
||||
2
|
||||
195.56713891 2 15.12502150
|
||||
22.88642834 2 6.29898914
|
||||
2
|
||||
126.42119500 2 15.93855113
|
||||
16.03597127 2 5.74006266
|
||||
|
||||
Cr GEN 10 2
|
||||
4
|
||||
14.00000000 1 18.28091074
|
||||
255.93275041 3 17.09800655
|
||||
-132.01826317 2 16.72267276
|
||||
-0.77388761 2 5.02865105
|
||||
2
|
||||
219.48146209 2 16.90078760
|
||||
28.07933176 2 7.33662150
|
||||
2
|
||||
139.98396871 2 17.31974516
|
||||
19.54835786 2 6.92409757
|
||||
|
||||
Mn GEN 10 2
|
||||
4
|
||||
15.00000000 1 21.91937433
|
||||
328.79061500 3 21.35527127
|
||||
-162.05172805 2 21.27162653
|
||||
-1.82694272 2 7.93913962
|
||||
2
|
||||
244.66870492 2 18.92044965
|
||||
33.54162717 2 8.32764757
|
||||
2
|
||||
162.35033685 2 20.17347020
|
||||
24.17956695 2 7.80047874
|
||||
|
||||
Fe GEN 10 2
|
||||
4
|
||||
16.00000000 1 23.22091713
|
||||
371.53467417 3 23.54714679
|
||||
-181.22603445 2 23.47256344
|
||||
-2.37305236 2 9.85238815
|
||||
2
|
||||
277.50032547 2 22.21062697
|
||||
46.20495585 2 9.51515800
|
||||
2
|
||||
194.99875056 2 24.57000871
|
||||
31.67945132 2 8.86648776
|
||||
|
||||
Co GEN 10 2
|
||||
4
|
||||
17.00000000 1 25.00124115
|
||||
425.02109971 3 22.83490096
|
||||
-195.48211282 2 23.47468155
|
||||
-2.81572866 2 10.33794825
|
||||
2
|
||||
271.77708486 2 23.41427030
|
||||
54.26461121 2 10.76931694
|
||||
2
|
||||
201.53430745 2 25.47446316
|
||||
38.99231927 2 10.68404901
|
||||
|
||||
Ni GEN 10 2
|
||||
4
|
||||
18.000 1 2.82630001015327e+01
|
||||
508.7340018275886 3 2.69360254587070e+01
|
||||
-2.20099999296390e+02 2 2.70860075292970e+01
|
||||
-2.13493270999809e+00 2 1.22130001295874e+01
|
||||
2
|
||||
3.21240002430625e+02 2 2.64320193944270e+01
|
||||
6.03470084610628e+01 2 1.17489696842121e+01
|
||||
2
|
||||
2.36539998999428e+02 2 2.94929998193907e+01
|
||||
4.43969887908906e+01 2 1.15569831458722e+01
|
||||
|
||||
Cu GEN 10 2
|
||||
4
|
||||
19.00000000 1 31.53811263
|
||||
599.22413997 3 31.06925531
|
||||
-244.68915484 2 30.59035868
|
||||
-1.29349525 2 14.05141063
|
||||
2
|
||||
370.71371824 2 29.35562242
|
||||
66.27560813 2 12.77235919
|
||||
2
|
||||
271.66281028 2 33.51694543
|
||||
49.76265057 2 12.52471484
|
||||
|
||||
Zn GEN 10 2
|
||||
4
|
||||
20.00000000 1 35.80797616
|
||||
716.15952323 3 34.53646083
|
||||
-204.68393323 2 28.62830178
|
||||
0.76026614 2 7.96239682
|
||||
2
|
||||
431.70804302 2 35.02141356
|
||||
95.87640437 2 14.63498691
|
||||
2
|
||||
313.57770563 2 42.22979234
|
||||
74.01270048 2 14.57429304
|
||||
|
@ -13,6 +13,8 @@ module Ao_basis : sig
|
||||
ao_coef : AO_coef.t array;
|
||||
ao_expo : AO_expo.t array;
|
||||
ao_cartesian : bool;
|
||||
ao_normalized : bool;
|
||||
primitives_normalized : bool;
|
||||
} [@@deriving sexp]
|
||||
;;
|
||||
val read : unit -> t option
|
||||
@ -34,6 +36,8 @@ end = struct
|
||||
ao_coef : AO_coef.t array;
|
||||
ao_expo : AO_expo.t array;
|
||||
ao_cartesian : bool;
|
||||
ao_normalized : bool;
|
||||
primitives_normalized : bool;
|
||||
} [@@deriving sexp]
|
||||
;;
|
||||
|
||||
@ -107,6 +111,24 @@ end = struct
|
||||
Ezfio.get_ao_basis_ao_cartesian ()
|
||||
;;
|
||||
|
||||
let read_ao_normalized () =
|
||||
if not (Ezfio.has_ao_basis_ao_normalized()) then
|
||||
get_default "ao_normalized"
|
||||
|> bool_of_string
|
||||
|> Ezfio.set_ao_basis_ao_normalized
|
||||
;
|
||||
Ezfio.get_ao_basis_ao_normalized ()
|
||||
;;
|
||||
|
||||
let read_primitives_normalized () =
|
||||
if not (Ezfio.has_ao_basis_primitives_normalized()) then
|
||||
get_default "primitives_normalized"
|
||||
|> bool_of_string
|
||||
|> Ezfio.set_ao_basis_primitives_normalized
|
||||
;
|
||||
Ezfio.get_ao_basis_primitives_normalized ()
|
||||
;;
|
||||
|
||||
let to_long_basis b =
|
||||
let ao_num = AO_number.to_int b.ao_num in
|
||||
let gto_array = Array.init (AO_number.to_int b.ao_num)
|
||||
@ -169,6 +191,8 @@ end = struct
|
||||
ao_coef ;
|
||||
ao_expo ;
|
||||
ao_cartesian ;
|
||||
ao_normalized ;
|
||||
primitives_normalized ;
|
||||
} = b
|
||||
in
|
||||
write_md5 b ;
|
||||
@ -201,6 +225,8 @@ end = struct
|
||||
~rank:2 ~dim:[| ao_num ; 3 |] ~data:ao_power) ;
|
||||
|
||||
Ezfio.set_ao_basis_ao_cartesian(ao_cartesian);
|
||||
Ezfio.set_ao_basis_ao_normalized(ao_normalized);
|
||||
Ezfio.set_ao_basis_primitives_normalized(primitives_normalized);
|
||||
|
||||
let ao_coef =
|
||||
Array.to_list ao_coef
|
||||
@ -233,6 +259,8 @@ end = struct
|
||||
ao_coef = read_ao_coef () ;
|
||||
ao_expo = read_ao_expo () ;
|
||||
ao_cartesian = read_ao_cartesian () ;
|
||||
ao_normalized = read_ao_normalized () ;
|
||||
primitives_normalized = read_primitives_normalized () ;
|
||||
}
|
||||
in
|
||||
to_md5 result
|
||||
@ -340,7 +368,10 @@ end = struct
|
||||
in
|
||||
{ ao_basis = name ;
|
||||
ao_num ; ao_prim_num ; ao_prim_num_max ; ao_nucl ;
|
||||
ao_power ; ao_coef ; ao_expo ; ao_cartesian }
|
||||
ao_power ; ao_coef ; ao_expo ; ao_cartesian ;
|
||||
ao_normalized = bool_of_string @@ get_default "ao_normalized";
|
||||
primitives_normalized = bool_of_string @@ get_default "primitives_normalized";
|
||||
}
|
||||
;;
|
||||
|
||||
let reorder b =
|
||||
@ -394,6 +425,14 @@ Cartesian coordinates (6d,10f,...) ::
|
||||
|
||||
ao_cartesian = %s
|
||||
|
||||
Use normalized primitive functions ::
|
||||
|
||||
primitives_normalized = %s
|
||||
|
||||
Use normalized basis functions ::
|
||||
|
||||
ao_normalized = %s
|
||||
|
||||
Basis set (read-only) ::
|
||||
|
||||
%s
|
||||
@ -407,6 +446,8 @@ Basis set (read-only) ::
|
||||
|
||||
" (AO_basis_name.to_string b.ao_basis)
|
||||
(string_of_bool b.ao_cartesian)
|
||||
(string_of_bool b.primitives_normalized)
|
||||
(string_of_bool b.ao_normalized)
|
||||
(Basis.to_string short_basis
|
||||
|> String_ext.split ~on:'\n'
|
||||
|> List.map (fun x-> " "^x)
|
||||
@ -434,16 +475,18 @@ Basis set (read-only) ::
|
||||
|
||||
let to_string b =
|
||||
Printf.sprintf "
|
||||
ao_basis = %s
|
||||
ao_num = %s
|
||||
ao_prim_num = %s
|
||||
ao_prim_num_max = %s
|
||||
ao_nucl = %s
|
||||
ao_power = %s
|
||||
ao_coef = %s
|
||||
ao_expo = %s
|
||||
ao_cartesian = %s
|
||||
md5 = %s
|
||||
ao_basis = %s
|
||||
ao_num = %s
|
||||
ao_prim_num = %s
|
||||
ao_prim_num_max = %s
|
||||
ao_nucl = %s
|
||||
ao_power = %s
|
||||
ao_coef = %s
|
||||
ao_expo = %s
|
||||
ao_cartesian = %s
|
||||
ao_normalized = %s
|
||||
primitives_normalized = %s
|
||||
md5 = %s
|
||||
"
|
||||
(AO_basis_name.to_string b.ao_basis)
|
||||
(AO_number.to_string b.ao_num)
|
||||
@ -459,6 +502,8 @@ md5 = %s
|
||||
(b.ao_expo |> Array.to_list |> List.map AO_expo.to_string
|
||||
|> String.concat ", ")
|
||||
(b.ao_cartesian |> string_of_bool)
|
||||
(b.ao_normalized |> string_of_bool)
|
||||
(b.primitives_normalized |> string_of_bool)
|
||||
(to_md5 b |> MD5.to_string )
|
||||
|
||||
;;
|
||||
|
@ -55,3 +55,15 @@ doc: If |true|, use |AOs| in Cartesian coordinates (6d,10f,...)
|
||||
interface: ezfio, provider
|
||||
default: false
|
||||
|
||||
[ao_normalized]
|
||||
type: logical
|
||||
doc: Use normalized basis functions
|
||||
interface: ezfio, provider
|
||||
default: true
|
||||
|
||||
[primitives_normalized]
|
||||
type: logical
|
||||
doc: Use normalized primitive functions
|
||||
interface: ezfio, provider
|
||||
default: true
|
||||
|
||||
|
@ -20,25 +20,38 @@ END_PROVIDER
|
||||
C_A(2) = 0.d0
|
||||
C_A(3) = 0.d0
|
||||
ao_coef_normalized = 0.d0
|
||||
|
||||
do i=1,ao_num
|
||||
|
||||
powA(1) = ao_power(i,1)
|
||||
powA(2) = ao_power(i,2)
|
||||
powA(3) = ao_power(i,3)
|
||||
|
||||
do j=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,j),powA,powA,overlap_x,overlap_y,overlap_z,norm,nz)
|
||||
ao_coef_normalized(i,j) = ao_coef(i,j)/sqrt(norm)
|
||||
enddo
|
||||
! Normalization of the primitives
|
||||
if (primitives_normalized) then
|
||||
do j=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,j),powA,powA,overlap_x,overlap_y,overlap_z,norm,nz)
|
||||
ao_coef_normalized(i,j) = ao_coef(i,j)/sqrt(norm)
|
||||
enddo
|
||||
else
|
||||
do j=1,ao_prim_num(i)
|
||||
ao_coef_normalized(i,j) = ao_coef(i,j)
|
||||
enddo
|
||||
endif
|
||||
|
||||
! Normalization of the contracted basis functions
|
||||
norm = 0.d0
|
||||
do j=1,ao_prim_num(i)
|
||||
do k=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,k),powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
|
||||
norm = norm+c*ao_coef_normalized(i,j)*ao_coef_normalized(i,k)
|
||||
enddo
|
||||
enddo
|
||||
ao_coef_normalization_factor(i) = 1.d0/sqrt(norm)
|
||||
if (ao_normalized) then
|
||||
norm = 0.d0
|
||||
do j=1,ao_prim_num(i)
|
||||
do k=1,ao_prim_num(i)
|
||||
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,k),powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
|
||||
norm = norm+c*ao_coef_normalized(i,j)*ao_coef_normalized(i,k)
|
||||
enddo
|
||||
enddo
|
||||
ao_coef_normalization_factor(i) = 1.d0/sqrt(norm)
|
||||
else
|
||||
ao_coef_normalization_factor(i) = 1.d0
|
||||
endif
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -3,6 +3,8 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
|
||||
! Nucleus-electron interaction, in the |AO| basis set.
|
||||
!
|
||||
! :math:`\langle \chi_i | -\sum_A \frac{1}{|r-R_A|} | \chi_j \rangle`
|
||||
!
|
||||
! These integrals also contain the pseudopotential integrals.
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: alpha, beta, gama, delta
|
||||
@ -75,11 +77,11 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
endif
|
||||
IF (DO_PSEUDO) THEN
|
||||
ao_integrals_n_e += ao_pseudo_integrals
|
||||
ENDIF
|
||||
|
||||
IF (DO_PSEUDO) THEN
|
||||
ao_integrals_n_e += ao_pseudo_integrals
|
||||
ENDIF
|
||||
endif
|
||||
|
||||
|
||||
if (write_ao_integrals_n_e) then
|
||||
|
13
src/ao_one_e_ints/screening.irp.f
Normal file
13
src/ao_one_e_ints/screening.irp.f
Normal file
@ -0,0 +1,13 @@
|
||||
logical function ao_one_e_integral_zero(i,k)
|
||||
implicit none
|
||||
integer, intent(in) :: i,k
|
||||
|
||||
ao_one_e_integral_zero = .False.
|
||||
if (.not.((io_ao_integrals_overlap/='None').or.is_periodic)) then
|
||||
if (ao_overlap_abs(i,k) < ao_integrals_threshold) then
|
||||
ao_one_e_integral_zero = .True.
|
||||
return
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
@ -85,9 +85,10 @@ double precision function get_ao_two_e_integral_erf(i,j,k,l,map) result(result)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: ii
|
||||
real(integral_kind) :: tmp
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
PROVIDE ao_two_e_integrals_erf_in_map ao_integrals_erf_cache ao_integrals_erf_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
tmp = 0.d0
|
||||
else if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < ao_integrals_threshold) then
|
||||
tmp = 0.d0
|
||||
@ -127,10 +128,11 @@ subroutine get_ao_two_e_integrals_erf(j,k,l,sze,out_val)
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
PROVIDE ao_two_e_integrals_erf_in_map ao_integrals_erf_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
@ -156,11 +158,12 @@ subroutine get_ao_two_e_integrals_erf_non_zero(j,k,l,sze,out_val,out_val_index,n
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh,tmp
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
PROVIDE ao_two_e_integrals_erf_in_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
|
@ -291,8 +291,10 @@ subroutine compute_ao_two_e_integrals_erf(j,k,l,sze,buffer_value)
|
||||
double precision :: ao_two_e_integral_erf
|
||||
|
||||
integer :: i
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
buffer_value = 0._integral_kind
|
||||
return
|
||||
endif
|
||||
@ -302,7 +304,7 @@ subroutine compute_ao_two_e_integrals_erf(j,k,l,sze,buffer_value)
|
||||
endif
|
||||
|
||||
do i = 1, ao_num
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
buffer_value(i) = 0._integral_kind
|
||||
cycle
|
||||
endif
|
||||
@ -618,6 +620,7 @@ subroutine compute_ao_integrals_erf_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
double precision :: integral, wall_0
|
||||
double precision :: thr
|
||||
integer :: kk, m, j1, i1
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
thr = ao_integrals_threshold
|
||||
|
||||
@ -634,7 +637,7 @@ subroutine compute_ao_integrals_erf_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thr) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
cycle
|
||||
endif
|
||||
if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thr ) then
|
||||
|
@ -333,11 +333,10 @@ double precision function get_ao_two_e_integral(i,j,k,l,map) result(result)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: ii
|
||||
real(integral_kind) :: tmp
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache ao_integrals_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
||||
tmp = 0.d0
|
||||
else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
tmp = 0.d0
|
||||
else
|
||||
ii = l-ao_integrals_cache_min
|
||||
@ -427,9 +426,8 @@ complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map) result(result)
|
||||
complex(integral_kind) :: tmp
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_periodic ao_integrals_cache_min
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
||||
tmp = (0.d0,0.d0)
|
||||
else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
tmp = (0.d0,0.d0)
|
||||
else
|
||||
ii = l-ao_integrals_cache_min
|
||||
@ -481,11 +479,10 @@ subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
@ -511,11 +508,10 @@ subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
@ -540,12 +536,13 @@ subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_z
|
||||
|
||||
integer :: i
|
||||
integer(key_kind) :: hash
|
||||
double precision :: thresh,tmp
|
||||
double precision :: tmp
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
thresh = ao_integrals_threshold
|
||||
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
@ -555,12 +552,12 @@ subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_z
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_two_e_integral
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
cycle
|
||||
endif
|
||||
call two_e_integrals_index(i,j,k,l,hash)
|
||||
call map_get(ao_integrals_map, hash,tmp)
|
||||
if (dabs(tmp) < thresh ) cycle
|
||||
if (dabs(tmp) < ao_integrals_threshold) cycle
|
||||
non_zero_int = non_zero_int+1
|
||||
out_val_index(non_zero_int) = i
|
||||
out_val(non_zero_int) = tmp
|
||||
@ -584,10 +581,12 @@ subroutine get_ao_two_e_integrals_non_zero_jl(j,l,thresh,sze_max,sze,out_val,out
|
||||
integer :: i,k
|
||||
integer(key_kind) :: hash
|
||||
double precision :: tmp
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
@ -598,7 +597,7 @@ subroutine get_ao_two_e_integrals_non_zero_jl(j,l,thresh,sze_max,sze,out_val,out
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_two_e_integral
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
cycle
|
||||
endif
|
||||
call two_e_integrals_index(i,j,k,l,hash)
|
||||
@ -630,10 +629,12 @@ subroutine get_ao_two_e_integrals_non_zero_jl_from_list(j,l,thresh,list,n_list,s
|
||||
integer :: i,k
|
||||
integer(key_kind) :: hash
|
||||
double precision :: tmp
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
non_zero_int = 0
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
out_val = 0.d0
|
||||
return
|
||||
endif
|
||||
@ -646,7 +647,7 @@ subroutine get_ao_two_e_integrals_non_zero_jl_from_list(j,l,thresh,list,n_list,s
|
||||
integer, external :: ao_l4
|
||||
double precision, external :: ao_two_e_integral
|
||||
!DIR$ FORCEINLINE
|
||||
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
cycle
|
||||
endif
|
||||
call two_e_integrals_index(i,j,k,l,hash)
|
||||
|
15
src/ao_two_e_ints/screening.irp.f
Normal file
15
src/ao_two_e_ints/screening.irp.f
Normal file
@ -0,0 +1,15 @@
|
||||
logical function ao_two_e_integral_zero(i,j,k,l)
|
||||
implicit none
|
||||
integer, intent(in) :: i,j,k,l
|
||||
|
||||
ao_two_e_integral_zero = .False.
|
||||
if (.not.(read_ao_two_e_integrals.or.is_periodic)) then
|
||||
if (ao_overlap_abs(j,l)*ao_overlap_abs(i,k) < ao_integrals_threshold) then
|
||||
ao_two_e_integral_zero = .True.
|
||||
return
|
||||
endif
|
||||
if (ao_two_e_integral_schwartz(j,l)*ao_two_e_integral_schwartz(i,k) < ao_integrals_threshold) then
|
||||
ao_two_e_integral_zero = .True.
|
||||
endif
|
||||
endif
|
||||
end
|
@ -18,89 +18,89 @@ double precision function ao_two_e_integral(i,j,k,l)
|
||||
|
||||
if (ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
ao_two_e_integral = ao_two_e_integral_schwartz_accel(i,j,k,l)
|
||||
return
|
||||
endif
|
||||
else
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
ao_two_e_integral = 0.d0
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
ao_two_e_integral = 0.d0
|
||||
|
||||
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: p_inv,q_inv
|
||||
double precision :: general_primitive_integral
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: p_inv,q_inv
|
||||
double precision :: general_primitive_integral
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
||||
I_power,J_power,I_center,J_center,dim1)
|
||||
p_inv = 1.d0/pp
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||||
K_power,L_power,K_center,L_center,dim1)
|
||||
q_inv = 1.d0/qq
|
||||
integral = general_primitive_integral(dim1, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||||
ao_two_e_integral = ao_two_e_integral + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
|
||||
I_power,J_power,I_center,J_center,dim1)
|
||||
p_inv = 1.d0/pp
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
|
||||
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
|
||||
K_power,L_power,K_center,L_center,dim1)
|
||||
q_inv = 1.d0/qq
|
||||
integral = general_primitive_integral(dim1, &
|
||||
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
|
||||
ao_two_e_integral = ao_two_e_integral + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
else
|
||||
else
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
enddo
|
||||
double precision :: ERI
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
enddo
|
||||
double precision :: ERI
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
integral = ERI( &
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||||
I_power(1),J_power(1),K_power(1),L_power(1), &
|
||||
I_power(2),J_power(2),K_power(2),L_power(2), &
|
||||
I_power(3),J_power(3),K_power(3),L_power(3))
|
||||
ao_two_e_integral = ao_two_e_integral + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p,i)
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
|
||||
integral = ERI( &
|
||||
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
|
||||
I_power(1),J_power(1),K_power(1),L_power(1), &
|
||||
I_power(2),J_power(2),K_power(2),L_power(2), &
|
||||
I_power(3),J_power(3),K_power(3),L_power(3))
|
||||
ao_two_e_integral = ao_two_e_integral + coef4 * integral
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
double precision function ao_two_e_integral_schwartz_accel(i,j,k,l)
|
||||
@ -300,22 +300,17 @@ subroutine compute_ao_two_e_integrals(j,k,l,sze,buffer_value)
|
||||
double precision :: ao_two_e_integral
|
||||
|
||||
integer :: i
|
||||
logical, external :: ao_one_e_integral_zero
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
if (ao_overlap_abs(j,l) < thresh) then
|
||||
buffer_value = 0._integral_kind
|
||||
return
|
||||
endif
|
||||
if (ao_two_e_integral_schwartz(j,l) < thresh ) then
|
||||
|
||||
if (ao_one_e_integral_zero(j,l)) then
|
||||
buffer_value = 0._integral_kind
|
||||
return
|
||||
endif
|
||||
|
||||
do i = 1, ao_num
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thresh) then
|
||||
buffer_value(i) = 0._integral_kind
|
||||
cycle
|
||||
endif
|
||||
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh ) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
buffer_value(i) = 0._integral_kind
|
||||
cycle
|
||||
endif
|
||||
@ -348,8 +343,6 @@ BEGIN_PROVIDER [ logical, ao_two_e_integrals_in_map ]
|
||||
integer :: kk, m, j1, i1, lmax
|
||||
character*(64) :: fmt
|
||||
|
||||
integral = ao_two_e_integral(1,1,1,1)
|
||||
|
||||
double precision :: map_mb
|
||||
PROVIDE read_ao_two_e_integrals io_ao_two_e_integrals
|
||||
if (read_ao_two_e_integrals) then
|
||||
@ -357,66 +350,72 @@ BEGIN_PROVIDER [ logical, ao_two_e_integrals_in_map ]
|
||||
call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
print*, 'AO integrals provided'
|
||||
ao_two_e_integrals_in_map = .True.
|
||||
return
|
||||
endif
|
||||
else
|
||||
|
||||
print*, 'Providing the AO integrals'
|
||||
call wall_time(wall_0)
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
print*, 'Providing the AO integrals'
|
||||
call wall_time(wall_0)
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
|
||||
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'ao_integrals')
|
||||
|
||||
character(len=:), allocatable :: task
|
||||
allocate(character(len=ao_num*12) :: task)
|
||||
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
|
||||
do l=1,ao_num
|
||||
write(task,fmt) (i,l, i=1,l)
|
||||
integer, external :: add_task_to_taskserver
|
||||
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task)) == -1) then
|
||||
stop 'Unable to add task to server'
|
||||
if (.True.) then
|
||||
! Avoid openMP
|
||||
integral = ao_two_e_integral(1,1,1,1)
|
||||
endif
|
||||
enddo
|
||||
deallocate(task)
|
||||
|
||||
integer, external :: zmq_set_running
|
||||
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
|
||||
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'ao_integrals')
|
||||
|
||||
PROVIDE nproc
|
||||
!$OMP PARALLEL DEFAULT(shared) private(i) num_threads(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call ao_two_e_integrals_in_map_collector(zmq_socket_pull)
|
||||
else
|
||||
call ao_two_e_integrals_in_map_slave_inproc(i)
|
||||
character(len=:), allocatable :: task
|
||||
allocate(character(len=ao_num*12) :: task)
|
||||
write(fmt,*) '(', ao_num, '(I5,X,I5,''|''))'
|
||||
do l=1,ao_num
|
||||
write(task,fmt) (i,l, i=1,l)
|
||||
integer, external :: add_task_to_taskserver
|
||||
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task)) == -1) then
|
||||
stop 'Unable to add task to server'
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
enddo
|
||||
deallocate(task)
|
||||
|
||||
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'ao_integrals')
|
||||
integer, external :: zmq_set_running
|
||||
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
|
||||
PROVIDE nproc
|
||||
!$OMP PARALLEL DEFAULT(shared) private(i) num_threads(nproc+1)
|
||||
i = omp_get_thread_num()
|
||||
if (i==0) then
|
||||
call ao_two_e_integrals_in_map_collector(zmq_socket_pull)
|
||||
else
|
||||
call ao_two_e_integrals_in_map_slave_inproc(i)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
|
||||
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'ao_integrals')
|
||||
|
||||
|
||||
print*, 'Sorting the map'
|
||||
call map_sort(ao_integrals_map)
|
||||
call cpu_time(cpu_2)
|
||||
call wall_time(wall_2)
|
||||
integer(map_size_kind) :: get_ao_map_size, ao_map_size
|
||||
ao_map_size = get_ao_map_size()
|
||||
print*, 'Sorting the map'
|
||||
call map_sort(ao_integrals_map)
|
||||
call cpu_time(cpu_2)
|
||||
call wall_time(wall_2)
|
||||
integer(map_size_kind) :: get_ao_map_size, ao_map_size
|
||||
ao_map_size = get_ao_map_size()
|
||||
|
||||
print*, 'AO integrals provided:'
|
||||
print*, ' Size of AO map : ', map_mb(ao_integrals_map) ,'MB'
|
||||
print*, ' Number of AO integrals :', ao_map_size
|
||||
print*, ' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
|
||||
print*, 'AO integrals provided:'
|
||||
print*, ' Size of AO map : ', map_mb(ao_integrals_map) ,'MB'
|
||||
print*, ' Number of AO integrals :', ao_map_size
|
||||
print*, ' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*, ' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1+tiny(1.d0)), ' )'
|
||||
|
||||
ao_two_e_integrals_in_map = .True.
|
||||
ao_two_e_integrals_in_map = .True.
|
||||
|
||||
if (write_ao_two_e_integrals.and.mpi_master) then
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
|
||||
endif
|
||||
|
||||
if (write_ao_two_e_integrals.and.mpi_master) then
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map)
|
||||
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
@ -1173,6 +1172,7 @@ subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
double precision :: integral, wall_0
|
||||
double precision :: thr
|
||||
integer :: kk, m, j1, i1
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
thr = ao_integrals_threshold
|
||||
|
||||
@ -1189,10 +1189,7 @@ subroutine compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
|
||||
if (i1 > j1) then
|
||||
exit
|
||||
endif
|
||||
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < thr) then
|
||||
cycle
|
||||
endif
|
||||
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thr ) then
|
||||
if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
cycle
|
||||
endif
|
||||
!DIR$ FORCEINLINE
|
||||
|
@ -22,14 +22,14 @@ END_PROVIDER
|
||||
subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Updates the rPT2- and Variance- matching weights.
|
||||
! Updates the PT2- and Variance- matching weights.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st
|
||||
double precision, intent(in) :: pt2(N_st)
|
||||
double precision, intent(in) :: variance(N_st)
|
||||
double precision, intent(in) :: norm(N_st)
|
||||
|
||||
double precision :: avg, rpt2(N_st), element, dt, x
|
||||
double precision :: avg, pt2_rpt2(N_st), element, dt, x
|
||||
integer :: k
|
||||
integer, save :: i_iter=0
|
||||
integer, parameter :: i_itermax = 1
|
||||
@ -46,16 +46,17 @@ subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
|
||||
i_iter = 1
|
||||
endif
|
||||
|
||||
dt = 0.5d0
|
||||
dt = 1.0d0
|
||||
|
||||
do k=1,N_st
|
||||
rpt2(k) = pt2(k)/(1.d0 + norm(k))
|
||||
! PT2 + rPT2
|
||||
pt2_rpt2(k) = pt2(k)* (1.d0 + 1.d0/(1.d0 + norm(k)))
|
||||
enddo
|
||||
|
||||
avg = sum(rpt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero
|
||||
avg = sum(pt2_rpt2(1:N_st)) / dble(N_st) - 1.d-32 ! Avoid future division by zero
|
||||
do k=1,N_st
|
||||
element = exp(dt*(rpt2(k)/avg -1.d0))
|
||||
element = min(1.5d0 , element)
|
||||
element = exp(dt*(pt2_rpt2(k)/avg -1.d0))
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
memo_pt2(k,i_iter) = element
|
||||
pt2_match_weight(k) *= product(memo_pt2(k,:))
|
||||
@ -64,14 +65,14 @@ subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
|
||||
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||
do k=1,N_st
|
||||
element = exp(dt*(variance(k)/avg -1.d0))
|
||||
element = min(1.5d0 , element)
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
memo_variance(k,i_iter) = element
|
||||
variance_match_weight(k) *= product(memo_variance(k,:))
|
||||
enddo
|
||||
|
||||
threshold_davidson_pt2 = min(1.d-6, &
|
||||
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(rpt2(1:N_states)))) )
|
||||
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
|
||||
|
||||
SOFT_TOUCH pt2_match_weight variance_match_weight threshold_davidson_pt2
|
||||
end
|
||||
|
@ -25,7 +25,7 @@
|
||||
!$OMP local_threshold)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
||||
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, &
|
||||
!$OMP ao_overlap_abs, ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
||||
!$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
||||
|
||||
allocate(keys(1), values(1))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
@ -48,8 +48,8 @@
|
||||
l = ll(1)
|
||||
j = jj(1)
|
||||
|
||||
if (ao_overlap_abs(k,l)*ao_overlap_abs(i,j) &
|
||||
< ao_integrals_threshold) then
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
if (ao_two_e_integral_zero(i,k,j,l)) then
|
||||
cycle
|
||||
endif
|
||||
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
|
||||
|
@ -28,7 +28,7 @@
|
||||
!$OMP local_threshold)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
||||
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, &
|
||||
!$OMP ao_overlap_abs, ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
||||
!$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
||||
|
||||
allocate(keys(1), values(1))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
@ -51,8 +51,8 @@
|
||||
l = ll(1)
|
||||
j = jj(1)
|
||||
|
||||
if (ao_overlap_abs(k,l)*ao_overlap_abs(i,j) &
|
||||
< ao_integrals_threshold) then
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
if (ao_two_e_integral_zero(i,k,j,l)) then
|
||||
cycle
|
||||
endif
|
||||
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
|
||||
|
@ -26,7 +26,7 @@
|
||||
!$OMP local_threshold)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
|
||||
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, &
|
||||
!$OMP ao_overlap_abs, ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
||||
!$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta)
|
||||
|
||||
allocate(keys(1), values(1))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
@ -49,8 +49,8 @@
|
||||
l = ll(1)
|
||||
j = jj(1)
|
||||
|
||||
if (ao_overlap_abs(k,l)*ao_overlap_abs(i,j) &
|
||||
< ao_integrals_threshold) then
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
if (ao_two_e_integral_zero(i,k,j,l)) then
|
||||
cycle
|
||||
endif
|
||||
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
|
||||
|
@ -189,7 +189,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
two_e_tmp_2 = 0.d0
|
||||
do j1 = 1,ao_num
|
||||
call get_ao_two_e_integrals(j1,k1,l1,ao_num,two_e_tmp_0(1,j1))
|
||||
! call compute_ao_two_e_integrals(j1,k1,l1,ao_num,two_e_tmp_0(1,j1))
|
||||
enddo
|
||||
do j1 = 1,ao_num
|
||||
kmax = 0
|
||||
@ -747,7 +746,6 @@ subroutine add_integrals_to_map_no_exit_34(mask_ijkl)
|
||||
two_e_tmp_2 = 0.d0
|
||||
do j1 = 1,ao_num
|
||||
call get_ao_two_e_integrals(j1,k1,l1,ao_num,two_e_tmp_0(1,j1))
|
||||
! call compute_ao_two_e_integrals(j1,k1,l1,ao_num,two_e_tmp_0(1,j1))
|
||||
enddo
|
||||
do j1 = 1,ao_num
|
||||
kmax = 0
|
||||
|
Loading…
Reference in New Issue
Block a user