diff --git a/src/ao_one_e_ints/ao_overlap.irp.f b/src/ao_one_e_ints/ao_overlap.irp.f index 0339ca05..b3b5c206 100644 --- a/src/ao_one_e_ints/ao_overlap.irp.f +++ b/src/ao_one_e_ints/ao_overlap.irp.f @@ -70,6 +70,29 @@ END_PROVIDER +BEGIN_PROVIDER [ double precision, ao_overlap_imag, (ao_num, ao_num) ] + implicit none + BEGIN_DOC + ! Imaginary part of the overlap + END_DOC + ao_overlap_imag = 0.d0 +END_PROVIDER + +BEGIN_PROVIDER [ complex*16, ao_overlap_complex, (ao_num, ao_num) ] + implicit none + BEGIN_DOC + ! Overlap for complex AOs + END_DOC + integer :: i,j + do j=1,ao_num + do i=1,ao_num + ao_overlap_complex(i,j) = dcmplx( ao_overlap(i,j), ao_overlap_imag(i,j) ) + enddo + enddo +END_PROVIDER + + + BEGIN_PROVIDER [ double precision, ao_overlap_abs,(ao_num,ao_num) ] implicit none @@ -86,44 +109,52 @@ BEGIN_PROVIDER [ double precision, ao_overlap_abs,(ao_num,ao_num) ] double precision :: A_center(3), B_center(3) integer :: power_A(3), power_B(3) double precision :: lower_exp_val, dx - dim1=100 - lower_exp_val = 40.d0 - !$OMP PARALLEL DO SCHEDULE(GUIDED) & - !$OMP DEFAULT(NONE) & - !$OMP PRIVATE(A_center,B_center,power_A,power_B,& - !$OMP overlap_x,overlap_y, overlap_z, overlap, & - !$OMP alpha, beta,i,j,dx) & - !$OMP SHARED(nucl_coord,ao_power,ao_prim_num, & - !$OMP ao_overlap_abs,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, & - !$OMP ao_expo_ordered_transp,dim1,lower_exp_val) - do j=1,ao_num - A_center(1) = nucl_coord( ao_nucl(j), 1 ) - A_center(2) = nucl_coord( ao_nucl(j), 2 ) - A_center(3) = nucl_coord( ao_nucl(j), 3 ) - power_A(1) = ao_power( j, 1 ) - power_A(2) = ao_power( j, 2 ) - power_A(3) = ao_power( j, 3 ) - do i= 1,ao_num - ao_overlap_abs(i,j)= 0.d0 - B_center(1) = nucl_coord( ao_nucl(i), 1 ) - B_center(2) = nucl_coord( ao_nucl(i), 2 ) - B_center(3) = nucl_coord( ao_nucl(i), 3 ) - power_B(1) = ao_power( i, 1 ) - power_B(2) = ao_power( i, 2 ) - power_B(3) = ao_power( i, 3 ) - do n = 1,ao_prim_num(j) - alpha = ao_expo_ordered_transp(n,j) - do l = 1, ao_prim_num(i) - beta = ao_expo_ordered_transp(l,i) - call overlap_x_abs(A_center(1),B_center(1),alpha,beta,power_A(1),power_B(1),overlap_x,lower_exp_val,dx,dim1) - call overlap_x_abs(A_center(2),B_center(2),alpha,beta,power_A(2),power_B(2),overlap_y,lower_exp_val,dx,dim1) - call overlap_x_abs(A_center(3),B_center(3),alpha,beta,power_A(3),power_B(3),overlap_z,lower_exp_val,dx,dim1) - ao_overlap_abs(i,j) += abs(ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)) * overlap_x * overlap_y * overlap_z - enddo + if (periodic) then + do j=1,ao_num + do i= 1,ao_num + ao_overlap_abs(i,j)= cdabs(ao_overlap_complex(i,j)) + enddo enddo - enddo - enddo - !$OMP END PARALLEL DO + else + dim1=100 + lower_exp_val = 40.d0 + !$OMP PARALLEL DO SCHEDULE(GUIDED) & + !$OMP DEFAULT(NONE) & + !$OMP PRIVATE(A_center,B_center,power_A,power_B, & + !$OMP overlap_x,overlap_y, overlap_z, overlap, & + !$OMP alpha, beta,i,j,dx) & + !$OMP SHARED(nucl_coord,ao_power,ao_prim_num, & + !$OMP ao_overlap_abs,ao_num,ao_coef_normalized_ordered_transp,ao_nucl,& + !$OMP ao_expo_ordered_transp,dim1,lower_exp_val) + do j=1,ao_num + A_center(1) = nucl_coord( ao_nucl(j), 1 ) + A_center(2) = nucl_coord( ao_nucl(j), 2 ) + A_center(3) = nucl_coord( ao_nucl(j), 3 ) + power_A(1) = ao_power( j, 1 ) + power_A(2) = ao_power( j, 2 ) + power_A(3) = ao_power( j, 3 ) + do i= 1,ao_num + ao_overlap_abs(i,j)= 0.d0 + B_center(1) = nucl_coord( ao_nucl(i), 1 ) + B_center(2) = nucl_coord( ao_nucl(i), 2 ) + B_center(3) = nucl_coord( ao_nucl(i), 3 ) + power_B(1) = ao_power( i, 1 ) + power_B(2) = ao_power( i, 2 ) + power_B(3) = ao_power( i, 3 ) + do n = 1,ao_prim_num(j) + alpha = ao_expo_ordered_transp(n,j) + do l = 1, ao_prim_num(i) + beta = ao_expo_ordered_transp(l,i) + call overlap_x_abs(A_center(1),B_center(1),alpha,beta,power_A(1),power_B(1),overlap_x,lower_exp_val,dx,dim1) + call overlap_x_abs(A_center(2),B_center(2),alpha,beta,power_A(2),power_B(2),overlap_y,lower_exp_val,dx,dim1) + call overlap_x_abs(A_center(3),B_center(3),alpha,beta,power_A(3),power_B(3),overlap_z,lower_exp_val,dx,dim1) + ao_overlap_abs(i,j) += abs(ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)) * overlap_x * overlap_y * overlap_z + enddo + enddo + enddo + enddo + !$OMP END PARALLEL DO + endif END_PROVIDER BEGIN_PROVIDER [ double precision, S_inv,(ao_num,ao_num) ] @@ -134,6 +165,15 @@ BEGIN_PROVIDER [ double precision, S_inv,(ao_num,ao_num) ] call get_pseudo_inverse(ao_overlap,size(ao_overlap,1),ao_num,ao_num,S_inv,size(S_inv,1)) END_PROVIDER +BEGIN_PROVIDER [ complex*16, S_inv_complex,(ao_num,ao_num) ] + implicit none + BEGIN_DOC +! Inverse of the overlap matrix + END_DOC + call get_pseudo_inverse_complex(ao_overlap_complex, & + size(ao_overlap_complex,1),ao_num,ao_num,S_inv_complex,size(S_inv_complex,1)) +END_PROVIDER + BEGIN_PROVIDER [ double precision, S_half_inv, (AO_num,AO_num) ] BEGIN_DOC diff --git a/src/ao_two_e_ints/map_integrals.irp.f b/src/ao_two_e_ints/map_integrals.irp.f index 9e729cd4..b95821a2 100644 --- a/src/ao_two_e_ints/map_integrals.irp.f +++ b/src/ao_two_e_ints/map_integrals.irp.f @@ -21,7 +21,7 @@ subroutine two_e_integrals_index(i,j,k,l,i1) implicit none BEGIN_DOC ! Gives a unique index for i,j,k,l using permtuation symmetry. -! i <-> k, j <-> l, and (i,k) <-> (j,l) +! i <-> k, j <-> l, and (i,k) <-> (j,l) for non-periodic systems END_DOC integer, intent(in) :: i,j,k,l integer(key_kind), intent(out) :: i1 @@ -37,6 +37,8 @@ subroutine two_e_integrals_index(i,j,k,l,i1) i1 = i1+shiftr(i2*i2-i2,1) end + + subroutine two_e_integrals_index_reverse(i,j,k,l,i1) use map_module implicit none @@ -126,6 +128,155 @@ subroutine two_e_integrals_index_reverse(i,j,k,l,i1) end + + +subroutine ao_idx2_sq(i,j,ij) + implicit none + integer, intent(in) :: i,j + integer, intent(out) :: ij + if (ij) then + ij=(i-1)*(i-1)+2*j-mod(i,2) + else + ij=i*i + endif +end + +subroutine idx2_tri_int(i,j,ij) + implicit none + integer, intent(in) :: i,j + integer, intent(out) :: ij + integer :: p,q + p = max(i,j) + q = min(i,j) + ij = q+ishft(p*p-p,-1) +end + +subroutine ao_idx2_tri_key(i,j,ij) + use map_module + implicit none + integer, intent(in) :: i,j + integer(key_kind), intent(out) :: ij + integer(key_kind) :: p,q + p = max(i,j) + q = min(i,j) + ij = q+ishft(p*p-p,-1) +end + +subroutine two_e_integrals_index_2fold(i,j,k,l,i1) + use map_module + implicit none + integer, intent(in) :: i,j,k,l + integer(key_kind), intent(out) :: i1 + integer :: ik,jl + + call ao_idx2_sq(i,k,ik) + call ao_idx2_sq(j,l,jl) + call ao_idx2_tri_key(ik,jl,i1) +end + +subroutine ao_idx2_sq_rev(i,k,ik) + BEGIN_DOC + ! reverse square compound index + END_DOC +! p = ceiling(dsqrt(dble(ik))) +! q = ceiling(0.5d0*(dble(ik)-dble((p-1)*(p-1)))) +! if (mod(ik,2)==0) then +! k=p +! i=q +! else +! i=p +! k=q +! endif + integer, intent(in) :: ik + integer, intent(out) :: i,k + integer :: pq(0:1),i1,i2 + pq(0) = ceiling(dsqrt(dble(ik))) + pq(1) = ceiling(0.5d0*(dble(ik)-dble((pq(0)-1)*(pq(0)-1)))) + i1=mod(ik,2) + i2=mod(ik+1,2) + + k=pq(i1) + i=pq(i2) +end + +subroutine ao_idx2_tri_rev_key(i,k,ik) + use map_module + BEGIN_DOC + !return i<=k + END_DOC + integer(key_kind), intent(in) :: ik + integer, intent(out) :: i,k + integer(key_kind) :: tmp_k + k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0)) + tmp_k = k + i = int(ik - ishft(tmp_k*tmp_k-tmp_k,-1)) +end + +subroutine idx2_tri_rev_int(i,k,ik) + BEGIN_DOC + !return i<=k + END_DOC + integer, intent(in) :: ik + integer, intent(out) :: i,k + k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0)) + i = int(ik - ishft(k*k-k,-1)) +end + +subroutine two_e_integrals_index_reverse_2fold(i,j,k,l,i1) + use map_module + implicit none + integer, intent(out) :: i(2),j(2),k(2),l(2) + integer(key_kind), intent(in) :: i1 + integer(key_kind) :: i0 + integer :: i2,i3 + i = 0 + call ao_idx2_tri_rev_key(i3,i2,i1) + + call ao_idx2_sq_rev(j(1),l(1),i2) + call ao_idx2_sq_rev(i(1),k(1),i3) + + !ijkl + i(2) = j(1) !jilk + j(2) = i(1) + k(2) = l(1) + l(2) = k(1) + +! i(3) = k(1) !klij complex conjugate +! j(3) = l(1) +! k(3) = i(1) +! l(3) = j(1) +! +! i(4) = l(1) !lkji complex conjugate +! j(4) = k(1) +! k(4) = j(1) +! l(4) = i(1) + + integer :: ii + if ( (i(1)==i(2)).and. & + (j(1)==j(2)).and. & + (k(1)==k(2)).and. & + (l(1)==l(2)) ) then + i(2) = 0 + endif +! This has been tested with up to 1000 AOs, and all the reverse indices are +! correct ! We can remove the test +! do ii=1,2 +! if (i(ii) /= 0) then +! call two_e_integrals_index_2fold(i(ii),j(ii),k(ii),l(ii),i0) +! if (i1 /= i0) then +! print *, i1, i0 +! print *, i(ii), j(ii), k(ii), l(ii) +! stop 'two_e_integrals_index_reverse_2fold failed' +! endif +! endif +! enddo +end + + + + BEGIN_PROVIDER [ integer, ao_integrals_cache_min ] &BEGIN_PROVIDER [ integer, ao_integrals_cache_max ] implicit none @@ -144,28 +295,30 @@ BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ] END_DOC PROVIDE ao_two_e_integrals_in_map integer :: i,j,k,l,ii - integer(key_kind) :: idx + integer(key_kind) :: idx, idx2 real(integral_kind) :: integral - !$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral) - do l=ao_integrals_cache_min,ao_integrals_cache_max - do k=ao_integrals_cache_min,ao_integrals_cache_max - do j=ao_integrals_cache_min,ao_integrals_cache_max - do i=ao_integrals_cache_min,ao_integrals_cache_max - !DIR$ FORCEINLINE - call two_e_integrals_index(i,j,k,l,idx) - !DIR$ FORCEINLINE - call map_get(ao_integrals_map,idx,integral) - ii = l-ao_integrals_cache_min - ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) - ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) - ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) - ao_integrals_cache(ii) = integral - enddo - enddo - enddo - enddo - !$OMP END PARALLEL DO + real(integral_kind) :: tmp_re, tmp_im + integer(key_kind) :: idx_re,idx_im + !$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral) + do l=ao_integrals_cache_min,ao_integrals_cache_max + do k=ao_integrals_cache_min,ao_integrals_cache_max + do j=ao_integrals_cache_min,ao_integrals_cache_max + do i=ao_integrals_cache_min,ao_integrals_cache_max + !DIR$ FORCEINLINE + call two_e_integrals_index(i,j,k,l,idx) + !DIR$ FORCEINLINE + call map_get(ao_integrals_map,idx,integral) + ii = l-ao_integrals_cache_min + ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) + ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) + ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) + ao_integrals_cache(ii) = integral + enddo + enddo + enddo + enddo + !$OMP END PARALLEL DO END_PROVIDER @@ -207,6 +360,113 @@ double precision function get_ao_two_e_integral(i,j,k,l,map) result(result) result = tmp end +BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ] + implicit none + BEGIN_DOC + ! Cache of AO integrals for fast access + END_DOC + PROVIDE ao_two_e_integrals_in_map + integer :: i,j,k,l,ii + integer(key_kind) :: idx1, idx2 + real(integral_kind) :: tmp_re, tmp_im + integer(key_kind) :: idx_re,idx_im + complex(integral_kind) :: integral + + + !$OMP PARALLEL DO PRIVATE (i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral) + do l=ao_integrals_cache_min,ao_integrals_cache_max + do k=ao_integrals_cache_min,ao_integrals_cache_max + do j=ao_integrals_cache_min,ao_integrals_cache_max + do i=ao_integrals_cache_min,ao_integrals_cache_max + !DIR$ FORCEINLINE + call two_e_integrals_index_2fold(i,j,k,l,idx1) + !DIR$ FORCEINLINE + call two_e_integrals_index_2fold(k,l,i,j,idx2) + idx_re = min(idx1,idx2) + idx_im = max(idx1,idx2) + !DIR$ FORCEINLINE + call map_get(ao_integrals_map,idx_re,tmp_re) + if (idx_re /= idx_im) then + call map_get(ao_integrals_map,idx_im,tmp_im) + if (idx1 < idx2) then + integral = cmplx(tmp_re,tmp_im) + else + integral = cmplx(tmp_re,-tmp_im) + endif + else + tmp_im = 0.d0 + integral = cmplx(tmp_re,tmp_im) + endif + + ii = l-ao_integrals_cache_min + ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) + ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) + ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) + ao_integrals_cache_periodic(ii) = integral + enddo + enddo + enddo + enddo + !$OMP END PARALLEL DO + +END_PROVIDER + + +complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map) result(result) + use map_module + implicit none + BEGIN_DOC + ! Gets one AO bi-electronic integral from the AO map + END_DOC + integer, intent(in) :: i,j,k,l + integer(key_kind) :: idx1,idx2 + real(integral_kind) :: tmp_re, tmp_im + integer(key_kind) :: idx_re,idx_im + type(map_type), intent(inout) :: map + integer :: ii + complex(integral_kind) :: tmp + PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_periodic ao_integrals_cache_min + !DIR$ FORCEINLINE + if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then + tmp = (0.d0,0.d0) + else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then + tmp = (0.d0,0.d0) + else + ii = l-ao_integrals_cache_min + ii = ior(ii, k-ao_integrals_cache_min) + ii = ior(ii, j-ao_integrals_cache_min) + ii = ior(ii, i-ao_integrals_cache_min) + if (iand(ii, -64) /= 0) then + !DIR$ FORCEINLINE + call two_e_integrals_index_2fold(i,j,k,l,idx1) + !DIR$ FORCEINLINE + call two_e_integrals_index_2fold(k,l,i,j,idx2) + idx_re = min(idx1,idx2) + idx_im = max(idx1,idx2) + !DIR$ FORCEINLINE + call map_get(ao_integrals_map,idx_re,tmp_re) + if (idx_re /= idx_im) then + call map_get(ao_integrals_map,idx_im,tmp_im) + if (idx1 < idx2) then + tmp = cmplx(tmp_re,tmp_im) + else + tmp = cmplx(tmp_re,-tmp_im) + endif + else + tmp_im = 0.d0 + tmp = cmplx(tmp_re,tmp_im) + endif + else + ii = l-ao_integrals_cache_min + ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) + ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) + ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) + tmp = ao_integrals_cache_periodic(ii) + endif + result = tmp + endif +end + subroutine get_ao_two_e_integrals(j,k,l,sze,out_val) use map_module @@ -237,6 +497,36 @@ subroutine get_ao_two_e_integrals(j,k,l,sze,out_val) end + +subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val) + use map_module + BEGIN_DOC + ! Gets multiple AO bi-electronic integral from the AO map . + ! All i are retrieved for j,k,l fixed. + ! physicist convention : + END_DOC + implicit none + integer, intent(in) :: j,k,l, sze + complex(integral_kind), intent(out) :: out_val(sze) + + integer :: i + integer(key_kind) :: hash + double precision :: thresh + PROVIDE ao_two_e_integrals_in_map ao_integrals_map + thresh = ao_integrals_threshold + + if (ao_overlap_abs(j,l) < thresh) then + out_val = 0.d0 + return + endif + + double precision :: get_ao_two_e_integral + do i=1,sze + out_val(i) = get_ao_two_e_integral(i,j,k,l,ao_integrals_map) + enddo + +end + subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int) use map_module implicit none @@ -407,81 +697,81 @@ subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values) end -subroutine dump_ao_integrals(filename) - use map_module - implicit none - BEGIN_DOC - ! Save to disk the |AO| integrals - END_DOC - character*(*), intent(in) :: filename - integer(cache_key_kind), pointer :: key(:) - real(integral_kind), pointer :: val(:) - integer*8 :: i,j, n - if (.not.mpi_master) then - return - endif - call ezfio_set_work_empty(.False.) - open(unit=66,file=filename,FORM='unformatted') - write(66) integral_kind, key_kind - write(66) ao_integrals_map%sorted, ao_integrals_map%map_size, & - ao_integrals_map%n_elements - do i=0_8,ao_integrals_map%map_size - write(66) ao_integrals_map%map(i)%sorted, ao_integrals_map%map(i)%map_size,& - ao_integrals_map%map(i)%n_elements - enddo - do i=0_8,ao_integrals_map%map_size - key => ao_integrals_map%map(i)%key - val => ao_integrals_map%map(i)%value - n = ao_integrals_map%map(i)%n_elements - write(66) (key(j), j=1,n), (val(j), j=1,n) - enddo - close(66) - -end +!subroutine dump_ao_integrals(filename) +! use map_module +! implicit none +! BEGIN_DOC +! ! Save to disk the |AO| integrals +! END_DOC +! character*(*), intent(in) :: filename +! integer(cache_key_kind), pointer :: key(:) +! real(integral_kind), pointer :: val(:) +! integer*8 :: i,j, n +! if (.not.mpi_master) then +! return +! endif +! call ezfio_set_work_empty(.False.) +! open(unit=66,file=filename,FORM='unformatted') +! write(66) integral_kind, key_kind +! write(66) ao_integrals_map%sorted, ao_integrals_map%map_size, & +! ao_integrals_map%n_elements +! do i=0_8,ao_integrals_map%map_size +! write(66) ao_integrals_map%map(i)%sorted, ao_integrals_map%map(i)%map_size,& +! ao_integrals_map%map(i)%n_elements +! enddo +! do i=0_8,ao_integrals_map%map_size +! key => ao_integrals_map%map(i)%key +! val => ao_integrals_map%map(i)%value +! n = ao_integrals_map%map(i)%n_elements +! write(66) (key(j), j=1,n), (val(j), j=1,n) +! enddo +! close(66) +! +!end -integer function load_ao_integrals(filename) - implicit none - BEGIN_DOC - ! Read from disk the |AO| integrals - END_DOC - character*(*), intent(in) :: filename - integer*8 :: i - integer(cache_key_kind), pointer :: key(:) - real(integral_kind), pointer :: val(:) - integer :: iknd, kknd - integer*8 :: n, j - load_ao_integrals = 1 - open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN') - read(66,err=98,end=98) iknd, kknd - if (iknd /= integral_kind) then - print *, 'Wrong integrals kind in file :', iknd - stop 1 - endif - if (kknd /= key_kind) then - print *, 'Wrong key kind in file :', kknd - stop 1 - endif - read(66,err=98,end=98) ao_integrals_map%sorted, ao_integrals_map%map_size,& - ao_integrals_map%n_elements - do i=0_8, ao_integrals_map%map_size - read(66,err=99,end=99) ao_integrals_map%map(i)%sorted, & - ao_integrals_map%map(i)%map_size, ao_integrals_map%map(i)%n_elements - call cache_map_reallocate(ao_integrals_map%map(i),ao_integrals_map%map(i)%map_size) - enddo - do i=0_8, ao_integrals_map%map_size - key => ao_integrals_map%map(i)%key - val => ao_integrals_map%map(i)%value - n = ao_integrals_map%map(i)%n_elements - read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n) - enddo - call map_sort(ao_integrals_map) - load_ao_integrals = 0 - return - 99 continue - call map_deinit(ao_integrals_map) - 98 continue - stop 'Problem reading ao_integrals_map file in work/' - -end - +!integer function load_ao_integrals(filename) +! implicit none +! BEGIN_DOC +! ! Read from disk the |AO| integrals +! END_DOC +! character*(*), intent(in) :: filename +! integer*8 :: i +! integer(cache_key_kind), pointer :: key(:) +! real(integral_kind), pointer :: val(:) +! integer :: iknd, kknd +! integer*8 :: n, j +! load_ao_integrals = 1 +! open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN') +! read(66,err=98,end=98) iknd, kknd +! if (iknd /= integral_kind) then +! print *, 'Wrong integrals kind in file :', iknd +! stop 1 +! endif +! if (kknd /= key_kind) then +! print *, 'Wrong key kind in file :', kknd +! stop 1 +! endif +! read(66,err=98,end=98) ao_integrals_map%sorted, ao_integrals_map%map_size,& +! ao_integrals_map%n_elements +! do i=0_8, ao_integrals_map%map_size +! read(66,err=99,end=99) ao_integrals_map%map(i)%sorted, & +! ao_integrals_map%map(i)%map_size, ao_integrals_map%map(i)%n_elements +! call cache_map_reallocate(ao_integrals_map%map(i),ao_integrals_map%map(i)%map_size) +! enddo +! do i=0_8, ao_integrals_map%map_size +! key => ao_integrals_map%map(i)%key +! val => ao_integrals_map%map(i)%value +! n = ao_integrals_map%map(i)%n_elements +! read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n) +! enddo +! call map_sort(ao_integrals_map) +! load_ao_integrals = 0 +! return +! 99 continue +! call map_deinit(ao_integrals_map) +! 98 continue +! stop 'Problem reading ao_integrals_map file in work/' +! +!end +! diff --git a/src/ao_two_e_ints/two_e_integrals.irp.f b/src/ao_two_e_ints/two_e_integrals.irp.f index 3ecdbbb2..a2bde897 100644 --- a/src/ao_two_e_ints/two_e_integrals.irp.f +++ b/src/ao_two_e_ints/two_e_integrals.irp.f @@ -354,10 +354,10 @@ BEGIN_PROVIDER [ logical, ao_two_e_integrals_in_map ] PROVIDE read_ao_two_e_integrals io_ao_two_e_integrals if (read_ao_two_e_integrals) then print*,'Reading the AO integrals' - call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map) - print*, 'AO integrals provided' - ao_two_e_integrals_in_map = .True. - return + call map_load_from_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map) + print*, 'AO integrals provided' + ao_two_e_integrals_in_map = .True. + return endif print*, 'Providing the AO integrals' diff --git a/src/utils/linear_algebra.irp.f b/src/utils/linear_algebra.irp.f index f0593d35..593a98d5 100644 --- a/src/utils/linear_algebra.irp.f +++ b/src/utils/linear_algebra.irp.f @@ -43,6 +43,690 @@ subroutine svd(A,LDA,U,LDU,D,Vt,LDVt,m,n) end +subroutine svd_complex(A,LDA,U,LDU,D,Vt,LDVt,m,n) + implicit none + BEGIN_DOC + ! Compute A = U.D.Vt + ! + ! LDx : leftmost dimension of x + ! + ! Dimension of A is m x n + ! A,U,Vt are complex*16 + ! D is double precision + END_DOC + + integer, intent(in) :: LDA, LDU, LDVt, m, n + complex*16, intent(in) :: A(LDA,n) + complex*16, intent(out) :: U(LDU,m) + complex*16, intent(out) :: Vt(LDVt,n) + double precision,intent(out) :: D(min(m,n)) + complex*16,allocatable :: work(:) + double precision,allocatable :: rwork(:) + integer :: info, lwork, i, j, k, lrwork + + complex*16,allocatable :: A_tmp(:,:) + allocate (A_tmp(LDA,n)) + A_tmp = A + lrwork = 5*min(m,n) + + ! Find optimal size for temp arrays + allocate(work(1),rwork(lrwork)) + lwork = -1 + call zgesvd('A','A', m, n, A_tmp, LDA, & + D, U, LDU, Vt, LDVt, work, lwork, rwork, info) + lwork = int(work(1)) + deallocate(work) + + allocate(work(lwork)) + call zgesvd('A','A', m, n, A_tmp, LDA, & + D, U, LDU, Vt, LDVt, work, lwork, rwork, info) + deallocate(work,rwork,A_tmp) + + if (info /= 0) then + print *, info, ': SVD failed' + stop + endif + +end + +subroutine ortho_canonical_complex(overlap,LDA,N,C,LDC,m) + implicit none + BEGIN_DOC + ! Compute C_new=C_old.U.s^-1/2 canonical orthogonalization. + ! + ! overlap : overlap matrix + ! + ! LDA : leftmost dimension of overlap array + ! + ! N : Overlap matrix is NxN (array is (LDA,N) ) + ! + ! C : Coefficients of the vectors to orthogonalize. On exit, + ! orthogonal vectors + ! + ! LDC : leftmost dimension of C + ! + ! m : Coefficients matrix is MxN, ( array is (LDC,N) ) + ! + END_DOC + + integer, intent(in) :: lda, ldc, n + integer, intent(out) :: m + complex*16, intent(in) :: overlap(lda,n) + complex*16, intent(inout) :: C(ldc,n) + complex*16, allocatable :: U(:,:) + complex*16, allocatable :: Vt(:,:) + double precision, allocatable :: D(:) + complex*16, allocatable :: S(:,:) + !DIR$ ATTRIBUTES ALIGN : 64 :: U, Vt, D + integer :: info, i, j + + if (n < 2) then + return + endif + + allocate (U(ldc,n), Vt(lda,n), D(n), S(lda,n)) + + call svd_complex(overlap,lda,U,ldc,D,Vt,lda,n,n) + + D(:) = dsqrt(D(:)) + m=n + do i=1,n + if ( D(i) >= 1.d-6 ) then + D(i) = 1.d0/D(i) + else + m = i-1 + print *, 'Removed Linear dependencies below:', 1.d0/D(m) + exit + endif + enddo + do i=m+1,n + D(i) = 0.d0 + enddo + + do i=1,m + if ( D(i) >= 1.d5 ) then + print *, 'Warning: Basis set may have linear dependence problems' + endif + enddo + + do j=1,n + do i=1,n + S(i,j) = U(i,j)*D(j) + enddo + enddo + + do j=1,n + do i=1,n + U(i,j) = C(i,j) + enddo + enddo + + call zgemm('N','N',n,n,n,(1.d0,0.d0),U,size(U,1),S,size(S,1),(0.d0,0.d0),C,size(C,1)) + deallocate (U, Vt, D, S) + +end + + +subroutine ortho_qr_complex(A,LDA,m,n) + implicit none + BEGIN_DOC + ! Orthogonalization using Q.R factorization + ! + ! A : matrix to orthogonalize + ! + ! LDA : leftmost dimension of A + ! + ! n : Number of rows of A + ! + ! m : Number of columns of A + ! + END_DOC + integer, intent(in) :: m,n, LDA + complex*16, intent(inout) :: A(LDA,n) + + integer :: lwork, info + integer, allocatable :: jpvt(:) + complex*16, allocatable :: tau(:), work(:) + + allocate (jpvt(n), tau(n), work(1)) + LWORK=-1 + call zgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO ) + LWORK=2*int(WORK(1)) + deallocate(WORK) + allocate(WORK(LWORK)) + call zgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO ) + call zungqr(m, n, n, A, LDA, tau, WORK, LWORK, INFO) + deallocate(WORK,jpvt,tau) +end + +subroutine ortho_qr_unblocked_complex(A,LDA,m,n) + implicit none + BEGIN_DOC + ! Orthogonalization using Q.R factorization + ! + ! A : matrix to orthogonalize + ! + ! LDA : leftmost dimension of A + ! + ! n : Number of rows of A + ! + ! m : Number of columns of A + ! + END_DOC + integer, intent(in) :: m,n, LDA + double precision, intent(inout) :: A(LDA,n) + + integer :: info + integer, allocatable :: jpvt(:) + double precision, allocatable :: tau(:), work(:) + + print *, irp_here, ': TO DO' + stop -1 + +! allocate (jpvt(n), tau(n), work(n)) +! call dgeqr2( m, n, A, LDA, TAU, WORK, INFO ) +! call dorg2r(m, n, n, A, LDA, tau, WORK, INFO) +! deallocate(WORK,jpvt,tau) +end + +subroutine ortho_lowdin_complex(overlap,LDA,N,C,LDC,m) + implicit none + BEGIN_DOC + ! Compute C_new=C_old.S^-1/2 orthogonalization. + ! + ! overlap : overlap matrix + ! + ! LDA : leftmost dimension of overlap array + ! + ! N : Overlap matrix is NxN (array is (LDA,N) ) + ! + ! C : Coefficients of the vectors to orthogonalize. On exit, + ! orthogonal vectors + ! + ! LDC : leftmost dimension of C + ! + ! M : Coefficients matrix is MxN, ( array is (LDC,N) ) + ! + END_DOC + + integer, intent(in) :: LDA, ldc, n, m + complex*16, intent(in) :: overlap(lda,n) + complex*16, intent(inout) :: C(ldc,n) + complex*16, allocatable :: U(:,:) + complex*16, allocatable :: Vt(:,:) + double precision, allocatable :: D(:) + complex*16, allocatable :: S(:,:) + integer :: info, i, j, k + + if (n < 2) then + return + endif + + allocate(U(ldc,n),Vt(lda,n),S(lda,n),D(n)) + + call svd_complex(overlap,lda,U,ldc,D,Vt,lda,n,n) + + !$OMP PARALLEL DEFAULT(NONE) & + !$OMP SHARED(S,U,D,Vt,n,C,m) & + !$OMP PRIVATE(i,j,k) + + !$OMP DO + do i=1,n + if ( D(i) < 1.d-6 ) then + D(i) = 0.d0 + else + D(i) = 1.d0/dsqrt(D(i)) + endif + do j=1,n + S(j,i) = (0.d0,0.d0) + enddo + enddo + !$OMP END DO + + do k=1,n + if (D(k) /= 0.d0) then + !$OMP DO + do j=1,n + do i=1,n + S(i,j) = S(i,j) + U(i,k)*D(k)*Vt(k,j) + enddo + enddo + !$OMP END DO NOWAIT + endif + enddo + + !$OMP BARRIER + !$OMP DO + do j=1,n + do i=1,m + U(i,j) = C(i,j) + enddo + enddo + !$OMP END DO + + !$OMP END PARALLEL + + call zgemm('N','N',m,n,n,(1.d0,0.d0),U,size(U,1),S,size(S,1),(0.d0,0.d0),C,size(C,1)) + + deallocate(U,Vt,S,D) +end + +subroutine get_inverse_complex(A,LDA,m,C,LDC) + implicit none + BEGIN_DOC + ! Returns the inverse of the square matrix A + END_DOC + integer, intent(in) :: m, LDA, LDC + complex*16, intent(in) :: A(LDA,m) + complex*16, intent(out) :: C(LDC,m) + + integer :: info,lwork + integer, allocatable :: ipiv(:) + complex*16,allocatable :: work(:) + allocate (ipiv(m), work(m*m)) + lwork = size(work) + C(1:m,1:m) = A(1:m,1:m) + call zgetrf(m,m,C,size(C,1),ipiv,info) + if (info /= 0) then + print *, info + stop 'error in inverse (zgetrf)' + endif + call zgetri(m,C,size(C,1),ipiv,work,lwork,info) + if (info /= 0) then + print *, info + stop 'error in inverse (zgetri)' + endif + deallocate(ipiv,work) +end + + +subroutine get_pseudo_inverse_complex(A,LDA,m,n,C,LDC) + implicit none + BEGIN_DOC + ! Find C = A^-1 + END_DOC + integer, intent(in) :: m,n, LDA, LDC + complex*16, intent(in) :: A(LDA,n) + complex*16, intent(out) :: C(LDC,m) + + double precision, allocatable :: D(:), rwork(:) + complex*16, allocatable :: U(:,:), Vt(:,:), work(:), A_tmp(:,:) + integer :: info, lwork + integer :: i,j,k + allocate (D(n),U(m,n),Vt(n,n),work(1),A_tmp(m,n),rwork(5*n)) + do j=1,n + do i=1,m + A_tmp(i,j) = A(i,j) + enddo + enddo + lwork = -1 + call zgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,rwork,info) + if (info /= 0) then + print *, info, ': SVD failed' + stop + endif + lwork = int(real(work(1))) + deallocate(work) + allocate(work(lwork)) + call zgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,rwork,info) + if (info /= 0) then + print *, info, ':: SVD failed' + stop 1 + endif + + do i=1,n + if (D(i)/D(1) > 1.d-10) then + D(i) = 1.d0/D(i) + else + D(i) = 0.d0 + endif + enddo + + C = (0.d0,0.d0) + do i=1,m + do j=1,n + do k=1,n + C(j,i) = C(j,i) + U(i,k) * D(k) * Vt(k,j) + enddo + enddo + enddo + + deallocate(U,D,Vt,work,A_tmp,rwork) + +end + +subroutine lapack_diagd_diag_in_place_complex(eigvalues,eigvectors,nmax,n) + implicit none + BEGIN_DOC + ! Diagonalize matrix H(complex) + ! + ! H is untouched between input and ouptut + ! + ! eigevalues(i) = ith lowest eigenvalue of the H matrix + ! + ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + ! + END_DOC + integer, intent(in) :: n,nmax +! double precision, intent(out) :: eigvectors(nmax,n) + complex*16, intent(inout) :: eigvectors(nmax,n) + double precision, intent(out) :: eigvalues(n) +! double precision, intent(in) :: H(nmax,n) + complex*16,allocatable :: work(:) + integer ,allocatable :: iwork(:) +! complex*16,allocatable :: A(:,:) + double precision, allocatable :: rwork(:) + integer :: lrwork, lwork, info, i,j,l,k, liwork + +! print*,'Diagonalization by jacobi' +! print*,'n = ',n + + lwork = 2*n*n + 2*n + lrwork = 2*n*n + 5*n+ 1 + liwork = 5*n + 3 + allocate (work(lwork),iwork(liwork),rwork(lrwork)) + + lwork = -1 + liwork = -1 + lrwork = -1 + ! get optimal work size + call ZHEEVD( 'V', 'U', n, eigvectors, nmax, eigvalues, work, lwork, & + rwork, lrwork, iwork, liwork, info ) + if (info < 0) then + print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value' + stop 2 + endif + lwork = int( real(work(1))) + liwork = iwork(1) + lrwork = int(rwork(1)) + deallocate (work,iwork,rwork) + + allocate (work(lwork),iwork(liwork),rwork(lrwork)) + call ZHEEVD( 'V', 'U', n, eigvectors, nmax, eigvalues, work, lwork, & + rwork, lrwork, iwork, liwork, info ) + deallocate(work,iwork,rwork) + + + if (info < 0) then + print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value' + stop 2 + else if( info > 0 ) then + write(*,*)'ZHEEVD Failed; calling ZHEEV' + lwork = 2*n - 1 + lrwork = 3*n - 2 + allocate(work(lwork),rwork(lrwork)) + lwork = -1 + call ZHEEV('V','L',n,eigvectors,nmax,eigvalues,work,lwork,rwork,info) + if (info < 0) then + print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value' + stop 2 + endif + lwork = int(work(1)) + deallocate(work) + allocate(work(lwork)) + call ZHEEV('V','L',n,eigvectors,nmax,eigvalues,work,lwork,rwork,info) + if (info /= 0 ) then + write(*,*)'ZHEEV Failed' + stop 1 + endif + deallocate(work,rwork) + end if + +end + +subroutine lapack_diagd_diag_complex(eigvalues,eigvectors,H,nmax,n) + implicit none + BEGIN_DOC + ! Diagonalize matrix H(complex) + ! + ! H is untouched between input and ouptut + ! + ! eigevalues(i) = ith lowest eigenvalue of the H matrix + ! + ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + ! + END_DOC + integer, intent(in) :: n,nmax +! double precision, intent(out) :: eigvectors(nmax,n) + complex*16, intent(out) :: eigvectors(nmax,n) + double precision, intent(out) :: eigvalues(n) +! double precision, intent(in) :: H(nmax,n) + complex*16, intent(in) :: H(nmax,n) + double precision, allocatable :: eigenvalues(:) + complex*16,allocatable :: work(:) + integer ,allocatable :: iwork(:) + complex*16,allocatable :: A(:,:) + double precision, allocatable :: rwork(:) + integer :: lrwork, lwork, info, i,j,l,k, liwork + + allocate(A(nmax,n),eigenvalues(n)) +! print*,'Diagonalization by jacobi' +! print*,'n = ',n + + A=H + lwork = 2*n*n + 2*n + lrwork = 2*n*n + 5*n+ 1 + liwork = 5*n + 3 + allocate (work(lwork),iwork(liwork),rwork(lrwork)) + + lwork = -1 + liwork = -1 + lrwork = -1 + ! get optimal work size + call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & + rwork, lrwork, iwork, liwork, info ) + if (info < 0) then + print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value' + stop 2 + endif + lwork = int( real(work(1))) + liwork = iwork(1) + lrwork = int(rwork(1)) + deallocate (work,iwork,rwork) + + allocate (work(lwork),iwork(liwork),rwork(lrwork)) + call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & + rwork, lrwork, iwork, liwork, info ) + deallocate(work,iwork,rwork) + + if (info < 0) then + print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value' + stop 2 + else if( info > 0 ) then + write(*,*)'ZHEEVD Failed; calling ZHEEV' + lwork = 2*n - 1 + lrwork = 3*n - 2 + allocate(work(lwork),rwork(lrwork)) + lwork = -1 + call ZHEEV('V','L',n,A,nmax,eigenvalues,work,lwork,rwork,info) + if (info < 0) then + print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value' + stop 2 + endif + lwork = int(work(1)) + deallocate(work) + allocate(work(lwork)) + call ZHEEV('V','L',n,A,nmax,eigenvalues,work,lwork,rwork,info) + if (info /= 0 ) then + write(*,*)'ZHEEV Failed' + stop 1 + endif + deallocate(work,rwork) + end if + + eigvectors = (0.d0,0.d0) + eigvalues = 0.d0 + do j = 1, n + eigvalues(j) = eigenvalues(j) + do i = 1, n + eigvectors(i,j) = A(i,j) + enddo + enddo + deallocate(A,eigenvalues) +end + +subroutine lapack_diagd_complex(eigvalues,eigvectors,H,nmax,n) + implicit none + BEGIN_DOC + ! Diagonalize matrix H(complex) + ! + ! H is untouched between input and ouptut + ! + ! eigevalues(i) = ith lowest eigenvalue of the H matrix + ! + ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + ! + END_DOC + integer, intent(in) :: n,nmax +! double precision, intent(out) :: eigvectors(nmax,n) + complex*16, intent(out) :: eigvectors(nmax,n) + double precision, intent(out) :: eigvalues(n) +! double precision, intent(in) :: H(nmax,n) + complex*16, intent(in) :: H(nmax,n) + double precision, allocatable :: eigenvalues(:) + complex*16,allocatable :: work(:) + integer ,allocatable :: iwork(:) + complex*16,allocatable :: A(:,:) + double precision, allocatable :: rwork(:) + integer :: lrwork, lwork, info, i,j,l,k, liwork + + allocate(A(nmax,n),eigenvalues(n)) +! print*,'Diagonalization by jacobi' +! print*,'n = ',n + + A=H + lwork = 2*n*n + 2*n + lrwork = 2*n*n + 5*n+ 1 + liwork = 5*n + 3 + allocate (work(lwork),iwork(liwork),rwork(lrwork)) + + lwork = -1 + liwork = -1 + lrwork = -1 + call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & + rwork, lrwork, iwork, liwork, info ) + if (info < 0) then + print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value' + stop 2 + endif + lwork = int( work( 1 ) ) + liwork = iwork(1) + lrwork = rwork(1) + deallocate (work,iwork,rwork) + + allocate (work(lwork),iwork(liwork),rwork(lrwork)) + call ZHEEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & + rwork, lrwork, iwork, liwork, info ) + deallocate(work,iwork,rwork) + + + if (info < 0) then + print *, irp_here, ': ZHEEVD: the ',-info,'-th argument had an illegal value' + stop 2 + else if( info > 0 ) then + write(*,*)'ZHEEVD Failed' + stop 1 + end if + + eigvectors = (0.d0,0.d0) + eigvalues = 0.d0 + do j = 1, n + eigvalues(j) = eigenvalues(j) + do i = 1, n + eigvectors(i,j) = A(i,j) + enddo + enddo + deallocate(A,eigenvalues) +end + +subroutine lapack_diag_complex(eigvalues,eigvectors,H,nmax,n) + implicit none + BEGIN_DOC + ! Diagonalize matrix H (complex) + ! + ! H is untouched between input and ouptut + ! + ! eigevalues(i) = ith lowest eigenvalue of the H matrix + ! + ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector + ! + END_DOC + integer, intent(in) :: n,nmax + complex*16, intent(out) :: eigvectors(nmax,n) + double precision, intent(out) :: eigvalues(n) + complex*16, intent(in) :: H(nmax,n) + double precision,allocatable :: eigenvalues(:) + complex*16,allocatable :: work(:) + complex*16,allocatable :: A(:,:) + double precision,allocatable :: rwork(:) + integer :: lwork, info, i,j,l,k,lrwork + + allocate(A(nmax,n),eigenvalues(n)) +! print*,'Diagonalization by jacobi' +! print*,'n = ',n + + A=H + !lwork = 2*n*n + 6*n+ 1 + lwork = 2*n - 1 + lrwork = 3*n - 2 + allocate (work(lwork),rwork(lrwork)) + + lwork = -1 + call ZHEEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & + rwork, info ) + if (info < 0) then + print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value' + stop 2 + endif + lwork = int( work( 1 ) ) + deallocate (work) + + allocate (work(lwork)) + call ZHEEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & + rwork, info ) + deallocate(work,rwork) + + if (info < 0) then + print *, irp_here, ': ZHEEV: the ',-info,'-th argument had an illegal value' + stop 2 + else if( info > 0 ) then + write(*,*)'ZHEEV Failed : ', info + do i=1,n + do j=1,n + print *, H(i,j) + enddo + enddo + stop 1 + end if + + eigvectors = (0.d0,0.d0) + eigvalues = 0.d0 + do j = 1, n + eigvalues(j) = eigenvalues(j) + do i = 1, n + eigvectors(i,j) = A(i,j) + enddo + enddo + deallocate(A,eigenvalues) +end + +subroutine matrix_vector_product_complex(u0,u1,matrix,sze,lda) + implicit none + BEGIN_DOC +! performs u1 += u0 * matrix + END_DOC + integer, intent(in) :: sze,lda + complex*16, intent(in) :: u0(sze) + complex*16, intent(inout) :: u1(sze) + complex*16, intent(in) :: matrix(lda,sze) + integer :: i,j + integer :: incx,incy + incx = 1 + incy = 1 + !call dsymv('U', sze, 1.d0, matrix, lda, u0, incx, 1.d0, u1, incy) + call zhemv('U', sze, (1.d0,0.d0), matrix, lda, u0, incx, (1.d0,0.d0), u1, incy) +end + subroutine ortho_canonical(overlap,LDA,N,C,LDC,m) implicit none BEGIN_DOC @@ -356,6 +1040,8 @@ subroutine get_pseudo_inverse(A,LDA,m,n,C,LDC) end + + subroutine find_rotation(A,LDA,B,m,C,n) implicit none BEGIN_DOC diff --git a/src/utils_periodic/import_integrals_ao_periodic.irp.f b/src/utils_periodic/import_integrals_ao_periodic.irp.f new file mode 100644 index 00000000..79eb8fe0 --- /dev/null +++ b/src/utils_periodic/import_integrals_ao_periodic.irp.f @@ -0,0 +1,137 @@ +program print_integrals + print *, 'Number of AOs?' + read(*,*) ao_num + TOUCH ao_num + call run +end + +subroutine run + use map_module + implicit none + + integer :: iunit + integer :: getunitandopen + + integer ::i,j,k,l + double precision :: integral + double precision, allocatable :: A(:,:), B(:,:) + double precision :: tmp_re, tmp_im + + integer :: n_integrals + integer(key_kind), allocatable :: buffer_i(:) + real(integral_kind), allocatable :: buffer_values(:) + + call ezfio_set_ao_basis_ao_num(ao_num) + + allocate (A(ao_num,ao_num), B(ao_num,ao_num) ) + + A(1,1) = huge(1.d0) + iunit = getunitandopen('E.qp','r') + read (iunit,*,end=9) A(1,1) + 9 continue + close(iunit) + if (A(1,1) /= huge(1.d0)) then + call ezfio_set_nuclei_nuclear_repulsion(A(1,1)) + call ezfio_set_nuclei_io_nuclear_repulsion("Read") + endif + + A = 0.d0 + B = 0.d0 + iunit = getunitandopen('T.qp','r') + do + read (iunit,*,end=10) i,j, tmp_re, tmp_im + A(i,j) = tmp_re + B(i,j) = tmp_im + if (i.ne.j) then + A(j,i) = tmp_re + B(j,i) = -tmp_im + endif + enddo + 10 continue + close(iunit) + call ezfio_set_ao_one_e_ints_ao_integrals_kinetic(A(1:ao_num, 1:ao_num)) + call ezfio_set_ao_one_e_ints_ao_integrals_kinetic_imag(B(1:ao_num, 1:ao_num)) + call ezfio_set_ao_one_e_ints_io_ao_integrals_kinetic("Read") + + A = 0.d0 + B = 0.d0 + iunit = getunitandopen('S.qp','r') + do + read (iunit,*,end=11) i,j, tmp_re, tmp_im + A(i,j) = tmp_re + B(i,j) = tmp_im + if (i.ne.j) then + A(j,i) = tmp_re + B(j,i) = -tmp_im + endif + enddo + 11 continue + close(iunit) + call ezfio_set_ao_one_e_ints_ao_integrals_overlap(A(1:ao_num, 1:ao_num)) + call ezfio_set_ao_one_e_ints_ao_integrals_overlap_imag(B(1:ao_num, 1:ao_num)) + call ezfio_set_ao_one_e_ints_io_ao_integrals_overlap("Read") + + A = 0.d0 + B = 0.d0 + iunit = getunitandopen('P.qp','r') + do + read (iunit,*,end=14) i,j, tmp_re, tmp_im + A(i,j) = tmp_re + B(i,j) = tmp_im + if (i.ne.j) then + A(j,i) = tmp_re + B(j,i) = -tmp_im + endif + enddo + 14 continue + close(iunit) + call ezfio_set_ao_one_e_ints_ao_integrals_pseudo(A(1:ao_num,1:ao_num)) + call ezfio_set_ao_one_e_ints_ao_integrals_pseudo_imag(B(1:ao_num,1:ao_num)) + call ezfio_set_ao_one_e_ints_io_ao_integrals_pseudo("Read") + + A = 0.d0 + B = 0.d0 + iunit = getunitandopen('V.qp','r') + do + read (iunit,*,end=12) i,j, tmp_re, tmp_im + A(i,j) = tmp_re + B(i,j) = tmp_im + if (i.ne.j) then + A(j,i) = tmp_re + B(j,i) = -tmp_im + endif + enddo + 12 continue + close(iunit) + call ezfio_set_ao_one_e_ints_ao_integrals_n_e(A(1:ao_num, 1:ao_num)) + call ezfio_set_ao_one_e_ints_ao_integrals_n_e_imag(B(1:ao_num, 1:ao_num)) + call ezfio_set_ao_one_e_ints_io_ao_integrals_n_e("Read") + +! allocate(buffer_i(ao_num**3), buffer_values(ao_num**3)) +! iunit = getunitandopen('W.qp','r') +! n_integrals=0 +! buffer_values = 0.d0 +! do +! read (iunit,*,end=13) i,j,k,l, integral +! n_integrals += 1 +! call two_e_integrals_index(i, j, k, l, buffer_i(n_integrals) ) +! buffer_values(n_integrals) = integral +! if (n_integrals == size(buffer_i)) then +! call insert_into_ao_integrals_map(n_integrals,buffer_i,buffer_values) +! n_integrals = 0 +! endif +! enddo +! 13 continue +! close(iunit) +! +! if (n_integrals > 0) then +! call insert_into_ao_integrals_map(n_integrals,buffer_i,buffer_values) +! endif +! +! call map_sort(ao_integrals_map) +! call map_unique(ao_integrals_map) +! +! call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints',ao_integrals_map) +! call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read') + +end diff --git a/src/utils_periodic/import_mo_coef_periodic.irp.f b/src/utils_periodic/import_mo_coef_periodic.irp.f new file mode 100644 index 00000000..bd41f776 --- /dev/null +++ b/src/utils_periodic/import_mo_coef_periodic.irp.f @@ -0,0 +1,27 @@ +program import_mo_coef_periodic + + PROVIDE ezfio_filename + call run +end + +subroutine run + use map_module + implicit none + + integer :: iunit + integer :: getunitandopen + + integer ::i,j + double precision :: int_re, int_im + + + iunit = getunitandopen('C.qp','r') + do + read (iunit,*,end=10) i,j, mo_coef(i,j), mo_coef_imag(i,j) + enddo + 10 continue + close(iunit) + mo_label = "None" + call save_mos + +end