9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 14:03:37 +01:00

added spherical harmonics

This commit is contained in:
eginer 2024-04-25 19:46:26 +02:00
parent a4db5a87e0
commit e9dccd2364
6 changed files with 482 additions and 0 deletions

59
plugins/local/spher_harm/.gitignore vendored Normal file
View File

@ -0,0 +1,59 @@
IRPF90_temp/
IRPF90_man/
build.ninja
irpf90.make
ezfio_interface.irp.f
irpf90_entities
tags
Makefile
ao_basis
ao_one_e_ints
ao_two_e_erf_ints
ao_two_e_ints
aux_quantities
becke_numerical_grid
bitmask
cis
cisd
cipsi
davidson
davidson_dressed
davidson_undressed
density_for_dft
determinants
dft_keywords
dft_utils_in_r
dft_utils_one_e
dft_utils_two_body
dressing
dummy
electrons
ezfio_files
fci
generators_cas
generators_full
hartree_fock
iterations
kohn_sham
kohn_sham_rs
mo_basis
mo_guess
mo_one_e_ints
mo_two_e_erf_ints
mo_two_e_ints
mpi
mrpt_utils
nuclei
perturbation
pseudo
psiref_cas
psiref_utils
scf_utils
selectors_cassd
selectors_full
selectors_utils
single_ref_method
slave
tools
utils
zmq

View File

@ -0,0 +1 @@
dft_utils_in_r

View File

@ -0,0 +1,4 @@
==========
spher_harm
==========

View File

@ -0,0 +1,50 @@
double precision function plgndr(l,m,x)
integer, intent(in) :: l,m
double precision, intent(in) :: x
BEGIN_DOC
! associated Legenre polynom P_l,m(x). Used for the Y_lm(theta,phi)
! Taken from https://iate.oac.uncor.edu/~mario/materia/nr/numrec/f6-8.pdf
END_DOC
integer :: i,ll
double precision :: fact,pll,pmm,pmmp1,somx2
if(m.lt.0.or.m.gt.l.or.dabs(x).gt.1.d0)then
print*,'bad arguments in plgndr'
pause
endif
pmm=1.d0
if(m.gt.0) then
somx2=dsqrt((1.d0-x)*(1.d0+x))
fact=1.d0
do i=1,m
pmm=-pmm*fact*somx2
fact=fact+2.d0
enddo
endif ! m > 0
if(l.eq.m) then
plgndr=pmm
else
pmmp1=x*(2*m+1)*pmm ! Compute P_m+1^m
if(l.eq.m+1) then
plgndr=pmmp1
else ! Compute P_l^m, l> m+1
do ll=m+2,l
pll=(x*dble(2*ll-1)*pmmp1-dble(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll
enddo
plgndr=pll
endif ! l.eq.m+1
endif ! l.eq.m
return
end
double precision function ortho_assoc_gaus_pol(l1,m1,l2)
implicit none
integer, intent(in) :: l1,m1,l2
double precision :: fact
if(l1.ne.l2)then
ortho_assoc_gaus_pol= 0.d0
else
ortho_assoc_gaus_pol = 2.d0*fact(l1+m1) / (dble(2*l1+1)*fact(l1-m1))
endif
end

View File

@ -0,0 +1,217 @@
program spher_harm
implicit none
call test_spher_harm
! call test_cart
! call test_brutal_spheric
end
subroutine test_cart
implicit none
include 'constants.include.F'
double precision :: r(3),theta,phi,r_abs
print*,''
r = 0.d0
r(1) = 1.d0
r(2) = 1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) =-1.d0
r(2) = 1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) =-1.d0
r(2) =-1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) = 1.d0
r(2) =-1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
end
subroutine test_spher_harm
implicit none
include 'constants.include.F'
integer :: l1,m1,i,l2,m2,lmax
double precision :: r(3),weight,accu_re, accu_im,accu
double precision :: re_ylm_1, im_ylm_1,re_ylm_2, im_ylm_2
l1 = 0
m1 = 0
l2 = 0
m2 = 0
lmax = 5
do l1 = 0,lmax
do m1 = -l1 ,l1
do l2 = 0,lmax
do m2 = -l2 ,l2
accu_re = 0.d0
accu_im = 0.d0
! <l1,m1|l2,m2> = \int dOmega Y_l1,m1^* Y_l2,m2
! = \int dOmega (re_ylm_1 -i im_ylm_1) * (re_ylm_2 +i im_ylm_2)
! = \int dOmega (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) +i (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu = 0.d0
do i = 1, n_points_integration_angular
double precision :: theta,phi,r_abs
r(1:3) = angular_quadrature_points(i,1:3)
weight = weights_angular_points(i)
call cartesian_to_spherical(r,theta,phi,r_abs)
if(theta.gt.pi.or.theta.lt.0.d0)then
print*,'pb with theta',theta
print*,r
endif
if(phi.gt.2.d0*pi.or.phi.lt.0.d0)then
print*,'pb with phi',phi/pi
print*,r
endif
call spher_harm_func_r3(r,l1,m1,re_ylm_1, im_ylm_1)
call spher_harm_func_r3(r,l2,m2,re_ylm_2, im_ylm_2)
! call spher_harm_func_m_pos(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
! call spher_harm_func_m_pos(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
write(33,'(10(F16.10,X))')phi/pi
enddo
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
enddo
enddo
enddo
enddo
double precision :: x,dx,xmax,xmin
integer:: nx
nx = 10000
xmin = -5.d0
xmax = 5.d0
dx = (xmax - xmin)/dble(nx)
x = xmin
do i = 1, nx
write(34,*)x,datan(x),dacos(x)
x += dx
enddo
end
subroutine test_brutal_spheric
implicit none
include 'constants.include.F'
integer :: itheta, iphi,ntheta,nphi
double precision :: theta_min, theta_max, dtheta,theta
double precision :: phi_min, phi_max, dphi,phi
double precision :: accu_re, accu_im,weight
double precision :: re_ylm_1, im_ylm_1 ,re_ylm_2, im_ylm_2,accu
integer :: l1,m1,i,l2,m2,lmax
phi_min = 0.d0
phi_max = 2.D0 * pi
theta_min = 0.d0
theta_max = 1.D0 * pi
ntheta = 1000
nphi = 1000
dphi = (phi_max - phi_min)/dble(nphi)
dtheta = (theta_max - theta_min)/dble(ntheta)
lmax = 3
do l1 = 0,lmax
do m1 = 0 ,l1
do l2 = 0,lmax
do m2 = 0 ,l2
accu_re = 0.d0
accu_im = 0.d0
accu = 0.d0
theta = theta_min
do itheta = 1, ntheta
phi = phi_min
do iphi = 1, nphi
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
call spher_harm_func_m_pos(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
call spher_harm_func_m_pos(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
weight = dtheta * dphi * dsin(theta)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
phi += dphi
enddo
theta += dtheta
enddo
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
print*,'accu = ',accu
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
endif
endif
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
endif
endif
enddo
enddo
enddo
enddo
end
subroutine test_assoc_leg_pol
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
print *, 'Hello world'
integer :: l1,m1,ngrid,i,l2,m2
l1 = 0
m1 = 0
l2 = 2
m2 = 0
double precision :: x, dx,xmax,accu,xmin
double precision :: plgndr,func_1,func_2,ortho_assoc_gaus_pol
ngrid = 100000
xmax = 1.d0
xmin = -1.d0
dx = (xmax-xmin)/dble(ngrid)
do l2 = 0,10
x = xmin
accu = 0.d0
do i = 1, ngrid
func_1 = plgndr(l1,m1,x)
func_2 = plgndr(l2,m2,x)
write(33,*)x, func_1,func_2
accu += func_1 * func_2 * dx
x += dx
enddo
print*,'l2 = ',l2
print*,'accu = ',accu
print*,ortho_assoc_gaus_pol(l1,m1,l2)
enddo
end

View File

@ -0,0 +1,151 @@
subroutine spher_harm_func_r3(r,l,m,re_ylm, im_ylm)
implicit none
integer, intent(in) :: l,m
double precision, intent(in) :: r(3)
double precision, intent(out) :: re_ylm, im_ylm
double precision :: theta, phi,r_abs
call cartesian_to_spherical(r,theta,phi,r_abs)
call spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
end
subroutine spher_harm_func_m_pos(l,m,theta,phi,re_ylm, im_ylm)
include 'constants.include.F'
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with m >0
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: prefact,fact,cos_theta,plgndr,p_lm
double precision :: tmp
prefact = dble(2*l+1)*fact(l-m)/(dfour_pi * fact(l+m))
prefact = dsqrt(prefact)
cos_theta = dcos(theta)
p_lm = plgndr(l,m,cos_theta)
tmp = prefact * p_lm
re_ylm = dcos(dble(m)*phi) * tmp
im_ylm = dsin(dble(m)*phi) * tmp
end
subroutine spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with -l<m<+l
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: re_ylm_pos,im_ylm_pos,tmp
integer :: minus_m
if(abs(m).gt.l)then
print*,'|m| > l in spher_harm_func !! stopping ...'
stop
endif
if(m.ge.0)then
call spher_harm_func_m_pos(l,m,theta,phi,re_ylm_pos, im_ylm_pos)
re_ylm = re_ylm_pos
im_ylm = im_ylm_pos
else
minus_m = -m !> 0
call spher_harm_func_m_pos(l,minus_m,theta,phi,re_ylm_pos, im_ylm_pos)
tmp = (-1)**minus_m
re_ylm = tmp * re_ylm_pos
im_ylm = -tmp * im_ylm_pos ! complex conjugate
endif
end
subroutine cartesian_to_spherical(r,theta,phi,r_abs)
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out):: theta, phi,r_abs
double precision :: r_2,x_2_y_2,tmp
include 'constants.include.F'
x_2_y_2 = r(1)*r(1) + r(2)*r(2)
r_2 = x_2_y_2 + r(3)*r(3)
r_abs = dsqrt(r_2)
if(r_abs.gt.1.d-20)then
theta = dacos(r(3)/r_abs)
else
theta = 0.d0
endif
if(.true.)then
if(dabs(r(1)).gt.0.d0)then
tmp = datan(r(2)/r(1))
! phi = datan2(r(2),r(1))
endif
! From Wikipedia on Spherical Harmonics
if(r(1).gt.0.d0)then
phi = tmp
else if(r(1).lt.0.d0.and.r(2).ge.0.d0)then
phi = tmp + pi
else if(r(1).lt.0.d0.and.r(2).lt.0.d0)then
phi = tmp - pi
else if(r(1)==0.d0.and.r(2).gt.0.d0)then
phi = 0.5d0*pi
else if(r(1)==0.d0.and.r(2).lt.0.d0)then
phi =-0.5d0*pi
else if(r(1)==0.d0.and.r(2)==0.d0)then
phi = 0.d0
endif
if(r(2).lt.0.d0.and.r(1).le.0.d0)then
tmp = pi - dabs(phi)
phi = pi + tmp
else if(r(2).lt.0.d0.and.r(1).gt.0.d0)then
phi = dtwo_pi + phi
endif
endif
if(.false.)then
x_2_y_2 = dsqrt(x_2_y_2)
if(dabs(x_2_y_2).gt.1.d-20.and.dabs(r(2)).gt.1.d-20)then
phi = dabs(r(2))/r(2) * dacos(r(1)/x_2_y_2)
else
phi = 0.d0
endif
endif
end
subroutine spher_harm_func_expl(l,m,theta,phi,re_ylm, im_ylm)
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with -l<m<+l and 0<= l <=2
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: tmp
include 'constants.include.F'
if(l==0.and.m==0)then
re_ylm = 0.5d0 * inv_sq_pi
im_ylm = 0.d0
else if(l==1.and.m==1)then
tmp = - inv_sq_pi * dsqrt(3.d0/8.d0) * dsin(theta)
re_ylm = tmp * dcos(phi)
im_ylm = tmp * dsin(phi)
else if(l==1.and.m==0)then
tmp = inv_sq_pi * dsqrt(3.d0/4.d0) * dcos(theta)
re_ylm = tmp
im_ylm = 0.d0
else if(l==2.and.m==2)then
tmp = 0.25d0 * inv_sq_pi * dsqrt(0.5d0*15.d0) * dsin(theta)*dsin(theta)
re_ylm = tmp * dcos(2.d0*phi)
im_ylm = tmp * dsin(2.d0*phi)
else if(l==2.and.m==1)then
tmp = - inv_sq_pi * dsqrt(15.d0/8.d0) * dsin(theta) * dcos(theta)
re_ylm = tmp * dcos(phi)
im_ylm = tmp * dsin(phi)
else if(l==2.and.m==0)then
tmp = dsqrt(5.d0/4.d0) * inv_sq_pi* (1.5d0*dcos(theta)*dcos(theta)-0.5d0)
re_ylm = tmp
im_ylm = 0.d0
endif
end