mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-20 04:12:21 +01:00
added spherical harmonics
This commit is contained in:
parent
a4db5a87e0
commit
e9dccd2364
59
plugins/local/spher_harm/.gitignore
vendored
Normal file
59
plugins/local/spher_harm/.gitignore
vendored
Normal file
@ -0,0 +1,59 @@
|
||||
IRPF90_temp/
|
||||
IRPF90_man/
|
||||
build.ninja
|
||||
irpf90.make
|
||||
ezfio_interface.irp.f
|
||||
irpf90_entities
|
||||
tags
|
||||
Makefile
|
||||
ao_basis
|
||||
ao_one_e_ints
|
||||
ao_two_e_erf_ints
|
||||
ao_two_e_ints
|
||||
aux_quantities
|
||||
becke_numerical_grid
|
||||
bitmask
|
||||
cis
|
||||
cisd
|
||||
cipsi
|
||||
davidson
|
||||
davidson_dressed
|
||||
davidson_undressed
|
||||
density_for_dft
|
||||
determinants
|
||||
dft_keywords
|
||||
dft_utils_in_r
|
||||
dft_utils_one_e
|
||||
dft_utils_two_body
|
||||
dressing
|
||||
dummy
|
||||
electrons
|
||||
ezfio_files
|
||||
fci
|
||||
generators_cas
|
||||
generators_full
|
||||
hartree_fock
|
||||
iterations
|
||||
kohn_sham
|
||||
kohn_sham_rs
|
||||
mo_basis
|
||||
mo_guess
|
||||
mo_one_e_ints
|
||||
mo_two_e_erf_ints
|
||||
mo_two_e_ints
|
||||
mpi
|
||||
mrpt_utils
|
||||
nuclei
|
||||
perturbation
|
||||
pseudo
|
||||
psiref_cas
|
||||
psiref_utils
|
||||
scf_utils
|
||||
selectors_cassd
|
||||
selectors_full
|
||||
selectors_utils
|
||||
single_ref_method
|
||||
slave
|
||||
tools
|
||||
utils
|
||||
zmq
|
1
plugins/local/spher_harm/NEED
Normal file
1
plugins/local/spher_harm/NEED
Normal file
@ -0,0 +1 @@
|
||||
dft_utils_in_r
|
4
plugins/local/spher_harm/README.rst
Normal file
4
plugins/local/spher_harm/README.rst
Normal file
@ -0,0 +1,4 @@
|
||||
==========
|
||||
spher_harm
|
||||
==========
|
||||
|
50
plugins/local/spher_harm/assoc_gaus_pol.irp.f
Normal file
50
plugins/local/spher_harm/assoc_gaus_pol.irp.f
Normal file
@ -0,0 +1,50 @@
|
||||
double precision function plgndr(l,m,x)
|
||||
integer, intent(in) :: l,m
|
||||
double precision, intent(in) :: x
|
||||
BEGIN_DOC
|
||||
! associated Legenre polynom P_l,m(x). Used for the Y_lm(theta,phi)
|
||||
! Taken from https://iate.oac.uncor.edu/~mario/materia/nr/numrec/f6-8.pdf
|
||||
END_DOC
|
||||
integer :: i,ll
|
||||
double precision :: fact,pll,pmm,pmmp1,somx2
|
||||
if(m.lt.0.or.m.gt.l.or.dabs(x).gt.1.d0)then
|
||||
print*,'bad arguments in plgndr'
|
||||
pause
|
||||
endif
|
||||
pmm=1.d0
|
||||
if(m.gt.0) then
|
||||
somx2=dsqrt((1.d0-x)*(1.d0+x))
|
||||
fact=1.d0
|
||||
do i=1,m
|
||||
pmm=-pmm*fact*somx2
|
||||
fact=fact+2.d0
|
||||
enddo
|
||||
endif ! m > 0
|
||||
if(l.eq.m) then
|
||||
plgndr=pmm
|
||||
else
|
||||
pmmp1=x*(2*m+1)*pmm ! Compute P_m+1^m
|
||||
if(l.eq.m+1) then
|
||||
plgndr=pmmp1
|
||||
else ! Compute P_l^m, l> m+1
|
||||
do ll=m+2,l
|
||||
pll=(x*dble(2*ll-1)*pmmp1-dble(ll+m-1)*pmm)/(ll-m)
|
||||
pmm=pmmp1
|
||||
pmmp1=pll
|
||||
enddo
|
||||
plgndr=pll
|
||||
endif ! l.eq.m+1
|
||||
endif ! l.eq.m
|
||||
return
|
||||
end
|
||||
|
||||
double precision function ortho_assoc_gaus_pol(l1,m1,l2)
|
||||
implicit none
|
||||
integer, intent(in) :: l1,m1,l2
|
||||
double precision :: fact
|
||||
if(l1.ne.l2)then
|
||||
ortho_assoc_gaus_pol= 0.d0
|
||||
else
|
||||
ortho_assoc_gaus_pol = 2.d0*fact(l1+m1) / (dble(2*l1+1)*fact(l1-m1))
|
||||
endif
|
||||
end
|
217
plugins/local/spher_harm/spher_harm.irp.f
Normal file
217
plugins/local/spher_harm/spher_harm.irp.f
Normal file
@ -0,0 +1,217 @@
|
||||
program spher_harm
|
||||
implicit none
|
||||
call test_spher_harm
|
||||
! call test_cart
|
||||
! call test_brutal_spheric
|
||||
end
|
||||
|
||||
subroutine test_cart
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
double precision :: r(3),theta,phi,r_abs
|
||||
print*,''
|
||||
r = 0.d0
|
||||
r(1) = 1.d0
|
||||
r(2) = 1.d0
|
||||
call cartesian_to_spherical(r,theta,phi,r_abs)
|
||||
print*,r
|
||||
print*,phi/pi
|
||||
print*,''
|
||||
r = 0.d0
|
||||
r(1) =-1.d0
|
||||
r(2) = 1.d0
|
||||
call cartesian_to_spherical(r,theta,phi,r_abs)
|
||||
print*,r
|
||||
print*,phi/pi
|
||||
print*,''
|
||||
r = 0.d0
|
||||
r(1) =-1.d0
|
||||
r(2) =-1.d0
|
||||
call cartesian_to_spherical(r,theta,phi,r_abs)
|
||||
print*,r
|
||||
print*,phi/pi
|
||||
print*,''
|
||||
r = 0.d0
|
||||
r(1) = 1.d0
|
||||
r(2) =-1.d0
|
||||
call cartesian_to_spherical(r,theta,phi,r_abs)
|
||||
print*,r
|
||||
print*,phi/pi
|
||||
end
|
||||
|
||||
subroutine test_spher_harm
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
integer :: l1,m1,i,l2,m2,lmax
|
||||
double precision :: r(3),weight,accu_re, accu_im,accu
|
||||
double precision :: re_ylm_1, im_ylm_1,re_ylm_2, im_ylm_2
|
||||
l1 = 0
|
||||
m1 = 0
|
||||
l2 = 0
|
||||
m2 = 0
|
||||
lmax = 5
|
||||
do l1 = 0,lmax
|
||||
do m1 = -l1 ,l1
|
||||
do l2 = 0,lmax
|
||||
do m2 = -l2 ,l2
|
||||
accu_re = 0.d0
|
||||
accu_im = 0.d0
|
||||
! <l1,m1|l2,m2> = \int dOmega Y_l1,m1^* Y_l2,m2
|
||||
! = \int dOmega (re_ylm_1 -i im_ylm_1) * (re_ylm_2 +i im_ylm_2)
|
||||
! = \int dOmega (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) +i (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
|
||||
accu = 0.d0
|
||||
do i = 1, n_points_integration_angular
|
||||
double precision :: theta,phi,r_abs
|
||||
r(1:3) = angular_quadrature_points(i,1:3)
|
||||
weight = weights_angular_points(i)
|
||||
call cartesian_to_spherical(r,theta,phi,r_abs)
|
||||
if(theta.gt.pi.or.theta.lt.0.d0)then
|
||||
print*,'pb with theta',theta
|
||||
print*,r
|
||||
endif
|
||||
if(phi.gt.2.d0*pi.or.phi.lt.0.d0)then
|
||||
print*,'pb with phi',phi/pi
|
||||
print*,r
|
||||
endif
|
||||
call spher_harm_func_r3(r,l1,m1,re_ylm_1, im_ylm_1)
|
||||
call spher_harm_func_r3(r,l2,m2,re_ylm_2, im_ylm_2)
|
||||
! call spher_harm_func_m_pos(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
|
||||
! call spher_harm_func_m_pos(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
|
||||
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
|
||||
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
|
||||
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
|
||||
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
|
||||
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
|
||||
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
|
||||
accu += weight
|
||||
write(33,'(10(F16.10,X))')phi/pi
|
||||
enddo
|
||||
if(l1.ne.l2.or.m1.ne.m2)then
|
||||
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
|
||||
print*,'pb OFF DIAG !!!!! '
|
||||
print*,'l1,m1,l2,m2',l1,m1,l2,m2
|
||||
print*,'accu_re = ',accu_re
|
||||
print*,'accu_im = ',accu_im
|
||||
endif
|
||||
endif
|
||||
if(l1==l2.and.m1==m2)then
|
||||
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
|
||||
print*,'pb DIAG !!!!! '
|
||||
print*,'l1,m1,l2,m2',l1,m1,l2,m2
|
||||
print*,'accu_re = ',accu_re
|
||||
print*,'accu_im = ',accu_im
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
double precision :: x,dx,xmax,xmin
|
||||
integer:: nx
|
||||
nx = 10000
|
||||
xmin = -5.d0
|
||||
xmax = 5.d0
|
||||
dx = (xmax - xmin)/dble(nx)
|
||||
x = xmin
|
||||
do i = 1, nx
|
||||
write(34,*)x,datan(x),dacos(x)
|
||||
x += dx
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine test_brutal_spheric
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
integer :: itheta, iphi,ntheta,nphi
|
||||
double precision :: theta_min, theta_max, dtheta,theta
|
||||
double precision :: phi_min, phi_max, dphi,phi
|
||||
double precision :: accu_re, accu_im,weight
|
||||
double precision :: re_ylm_1, im_ylm_1 ,re_ylm_2, im_ylm_2,accu
|
||||
integer :: l1,m1,i,l2,m2,lmax
|
||||
phi_min = 0.d0
|
||||
phi_max = 2.D0 * pi
|
||||
theta_min = 0.d0
|
||||
theta_max = 1.D0 * pi
|
||||
ntheta = 1000
|
||||
nphi = 1000
|
||||
dphi = (phi_max - phi_min)/dble(nphi)
|
||||
dtheta = (theta_max - theta_min)/dble(ntheta)
|
||||
|
||||
lmax = 3
|
||||
do l1 = 0,lmax
|
||||
do m1 = 0 ,l1
|
||||
do l2 = 0,lmax
|
||||
do m2 = 0 ,l2
|
||||
accu_re = 0.d0
|
||||
accu_im = 0.d0
|
||||
accu = 0.d0
|
||||
theta = theta_min
|
||||
do itheta = 1, ntheta
|
||||
phi = phi_min
|
||||
do iphi = 1, nphi
|
||||
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
|
||||
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
|
||||
call spher_harm_func_m_pos(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
|
||||
call spher_harm_func_m_pos(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
|
||||
weight = dtheta * dphi * dsin(theta)
|
||||
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
|
||||
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
|
||||
accu += weight
|
||||
phi += dphi
|
||||
enddo
|
||||
theta += dtheta
|
||||
enddo
|
||||
print*,'l1,m1,l2,m2',l1,m1,l2,m2
|
||||
print*,'accu_re = ',accu_re
|
||||
print*,'accu_im = ',accu_im
|
||||
print*,'accu = ',accu
|
||||
if(l1.ne.l2.or.m1.ne.m2)then
|
||||
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
|
||||
print*,'pb OFF DIAG !!!!! '
|
||||
endif
|
||||
endif
|
||||
if(l1==l2.and.m1==m2)then
|
||||
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
|
||||
print*,'pb DIAG !!!!! '
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
end
|
||||
|
||||
subroutine test_assoc_leg_pol
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
print *, 'Hello world'
|
||||
integer :: l1,m1,ngrid,i,l2,m2
|
||||
l1 = 0
|
||||
m1 = 0
|
||||
l2 = 2
|
||||
m2 = 0
|
||||
double precision :: x, dx,xmax,accu,xmin
|
||||
double precision :: plgndr,func_1,func_2,ortho_assoc_gaus_pol
|
||||
ngrid = 100000
|
||||
xmax = 1.d0
|
||||
xmin = -1.d0
|
||||
dx = (xmax-xmin)/dble(ngrid)
|
||||
do l2 = 0,10
|
||||
x = xmin
|
||||
accu = 0.d0
|
||||
do i = 1, ngrid
|
||||
func_1 = plgndr(l1,m1,x)
|
||||
func_2 = plgndr(l2,m2,x)
|
||||
write(33,*)x, func_1,func_2
|
||||
accu += func_1 * func_2 * dx
|
||||
x += dx
|
||||
enddo
|
||||
print*,'l2 = ',l2
|
||||
print*,'accu = ',accu
|
||||
print*,ortho_assoc_gaus_pol(l1,m1,l2)
|
||||
enddo
|
||||
end
|
151
plugins/local/spher_harm/spher_harm_func.irp.f
Normal file
151
plugins/local/spher_harm/spher_harm_func.irp.f
Normal file
@ -0,0 +1,151 @@
|
||||
subroutine spher_harm_func_r3(r,l,m,re_ylm, im_ylm)
|
||||
implicit none
|
||||
integer, intent(in) :: l,m
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: re_ylm, im_ylm
|
||||
|
||||
double precision :: theta, phi,r_abs
|
||||
call cartesian_to_spherical(r,theta,phi,r_abs)
|
||||
call spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
|
||||
end
|
||||
|
||||
|
||||
subroutine spher_harm_func_m_pos(l,m,theta,phi,re_ylm, im_ylm)
|
||||
include 'constants.include.F'
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Y_lm(theta,phi) with m >0
|
||||
!
|
||||
END_DOC
|
||||
double precision, intent(in) :: theta, phi
|
||||
integer, intent(in) :: l,m
|
||||
double precision, intent(out):: re_ylm,im_ylm
|
||||
double precision :: prefact,fact,cos_theta,plgndr,p_lm
|
||||
double precision :: tmp
|
||||
prefact = dble(2*l+1)*fact(l-m)/(dfour_pi * fact(l+m))
|
||||
prefact = dsqrt(prefact)
|
||||
cos_theta = dcos(theta)
|
||||
p_lm = plgndr(l,m,cos_theta)
|
||||
tmp = prefact * p_lm
|
||||
re_ylm = dcos(dble(m)*phi) * tmp
|
||||
im_ylm = dsin(dble(m)*phi) * tmp
|
||||
end
|
||||
|
||||
subroutine spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Y_lm(theta,phi) with -l<m<+l
|
||||
!
|
||||
END_DOC
|
||||
double precision, intent(in) :: theta, phi
|
||||
integer, intent(in) :: l,m
|
||||
double precision, intent(out):: re_ylm,im_ylm
|
||||
double precision :: re_ylm_pos,im_ylm_pos,tmp
|
||||
integer :: minus_m
|
||||
if(abs(m).gt.l)then
|
||||
print*,'|m| > l in spher_harm_func !! stopping ...'
|
||||
stop
|
||||
endif
|
||||
if(m.ge.0)then
|
||||
call spher_harm_func_m_pos(l,m,theta,phi,re_ylm_pos, im_ylm_pos)
|
||||
re_ylm = re_ylm_pos
|
||||
im_ylm = im_ylm_pos
|
||||
else
|
||||
minus_m = -m !> 0
|
||||
call spher_harm_func_m_pos(l,minus_m,theta,phi,re_ylm_pos, im_ylm_pos)
|
||||
tmp = (-1)**minus_m
|
||||
re_ylm = tmp * re_ylm_pos
|
||||
im_ylm = -tmp * im_ylm_pos ! complex conjugate
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine cartesian_to_spherical(r,theta,phi,r_abs)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out):: theta, phi,r_abs
|
||||
double precision :: r_2,x_2_y_2,tmp
|
||||
include 'constants.include.F'
|
||||
x_2_y_2 = r(1)*r(1) + r(2)*r(2)
|
||||
r_2 = x_2_y_2 + r(3)*r(3)
|
||||
r_abs = dsqrt(r_2)
|
||||
|
||||
if(r_abs.gt.1.d-20)then
|
||||
theta = dacos(r(3)/r_abs)
|
||||
else
|
||||
theta = 0.d0
|
||||
endif
|
||||
|
||||
if(.true.)then
|
||||
if(dabs(r(1)).gt.0.d0)then
|
||||
tmp = datan(r(2)/r(1))
|
||||
! phi = datan2(r(2),r(1))
|
||||
endif
|
||||
! From Wikipedia on Spherical Harmonics
|
||||
if(r(1).gt.0.d0)then
|
||||
phi = tmp
|
||||
else if(r(1).lt.0.d0.and.r(2).ge.0.d0)then
|
||||
phi = tmp + pi
|
||||
else if(r(1).lt.0.d0.and.r(2).lt.0.d0)then
|
||||
phi = tmp - pi
|
||||
else if(r(1)==0.d0.and.r(2).gt.0.d0)then
|
||||
phi = 0.5d0*pi
|
||||
else if(r(1)==0.d0.and.r(2).lt.0.d0)then
|
||||
phi =-0.5d0*pi
|
||||
else if(r(1)==0.d0.and.r(2)==0.d0)then
|
||||
phi = 0.d0
|
||||
endif
|
||||
if(r(2).lt.0.d0.and.r(1).le.0.d0)then
|
||||
tmp = pi - dabs(phi)
|
||||
phi = pi + tmp
|
||||
else if(r(2).lt.0.d0.and.r(1).gt.0.d0)then
|
||||
phi = dtwo_pi + phi
|
||||
endif
|
||||
endif
|
||||
|
||||
if(.false.)then
|
||||
x_2_y_2 = dsqrt(x_2_y_2)
|
||||
if(dabs(x_2_y_2).gt.1.d-20.and.dabs(r(2)).gt.1.d-20)then
|
||||
phi = dabs(r(2))/r(2) * dacos(r(1)/x_2_y_2)
|
||||
else
|
||||
phi = 0.d0
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
subroutine spher_harm_func_expl(l,m,theta,phi,re_ylm, im_ylm)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Y_lm(theta,phi) with -l<m<+l and 0<= l <=2
|
||||
!
|
||||
END_DOC
|
||||
double precision, intent(in) :: theta, phi
|
||||
integer, intent(in) :: l,m
|
||||
double precision, intent(out):: re_ylm,im_ylm
|
||||
double precision :: tmp
|
||||
include 'constants.include.F'
|
||||
if(l==0.and.m==0)then
|
||||
re_ylm = 0.5d0 * inv_sq_pi
|
||||
im_ylm = 0.d0
|
||||
else if(l==1.and.m==1)then
|
||||
tmp = - inv_sq_pi * dsqrt(3.d0/8.d0) * dsin(theta)
|
||||
re_ylm = tmp * dcos(phi)
|
||||
im_ylm = tmp * dsin(phi)
|
||||
else if(l==1.and.m==0)then
|
||||
tmp = inv_sq_pi * dsqrt(3.d0/4.d0) * dcos(theta)
|
||||
re_ylm = tmp
|
||||
im_ylm = 0.d0
|
||||
else if(l==2.and.m==2)then
|
||||
tmp = 0.25d0 * inv_sq_pi * dsqrt(0.5d0*15.d0) * dsin(theta)*dsin(theta)
|
||||
re_ylm = tmp * dcos(2.d0*phi)
|
||||
im_ylm = tmp * dsin(2.d0*phi)
|
||||
else if(l==2.and.m==1)then
|
||||
tmp = - inv_sq_pi * dsqrt(15.d0/8.d0) * dsin(theta) * dcos(theta)
|
||||
re_ylm = tmp * dcos(phi)
|
||||
im_ylm = tmp * dsin(phi)
|
||||
else if(l==2.and.m==0)then
|
||||
tmp = dsqrt(5.d0/4.d0) * inv_sq_pi* (1.5d0*dcos(theta)*dcos(theta)-0.5d0)
|
||||
re_ylm = tmp
|
||||
im_ylm = 0.d0
|
||||
endif
|
||||
end
|
Loading…
Reference in New Issue
Block a user