mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-02 08:35:38 +01:00
Merge branch 'dev' into master
This commit is contained in:
commit
e9be29933c
@ -3,7 +3,7 @@
|
||||
"""
|
||||
Usage:
|
||||
qp_plugins list [-iuq]
|
||||
qp_plugins download <url>
|
||||
qp_plugins download <url> [-n <name>]
|
||||
qp_plugins install <name>...
|
||||
qp_plugins uninstall <name>
|
||||
qp_plugins create -n <name> [-r <repo>] [<needed_modules>...]
|
||||
@ -186,7 +186,10 @@ def main(arguments):
|
||||
url.endswith(".zip"))
|
||||
os.chdir(QP_PLUGINS)
|
||||
if is_repo:
|
||||
subprocess.check_call(["git", "clone", url])
|
||||
git_cmd=["git", "clone", url]
|
||||
if arguments["--name"]:
|
||||
git_cmd.append(arguments["--name"])
|
||||
subprocess.check_call(git_cmd)
|
||||
else:
|
||||
filename = url.split('/')[-1]
|
||||
|
||||
|
@ -195,6 +195,20 @@ BEGIN_PROVIDER [double precision, weight_at_r, (n_points_integration_angular,n_p
|
||||
enddo
|
||||
accu = 1.d0/accu
|
||||
weight_at_r(l,k,j) = tmp_array(j) * accu
|
||||
if(isnan(weight_at_r(l,k,j)))then
|
||||
print*,'isnan(weight_at_r(l,k,j))'
|
||||
print*,l,k,j
|
||||
accu = 0.d0
|
||||
do i = 1, nucl_num
|
||||
! function defined for each atom "i" by equation (13) and (21) with k == 3
|
||||
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
|
||||
print*,i,tmp_array(i)
|
||||
! Then you compute the summ the P_n(r) function for each of the "r" points
|
||||
accu += tmp_array(i)
|
||||
enddo
|
||||
write(*,'(100(F16.10,X))')tmp_array(j) , accu
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
@ -221,6 +235,12 @@ BEGIN_PROVIDER [double precision, final_weight_at_r, (n_points_integration_angul
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)&
|
||||
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
|
||||
final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration * dr_radial_integral
|
||||
if(isnan(final_weight_at_r(k,i,j)))then
|
||||
print*,'isnan(final_weight_at_r(k,i,j))'
|
||||
print*,k,i,j
|
||||
write(*,'(100(F16.10,X))')weights_angular_points(k) , weight_at_r(k,i,j) , contrib_integration , dr_radial_integral
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
@ -31,6 +31,10 @@ double precision function cell_function_becke(r,atom_number)
|
||||
double precision :: mu_ij,nu_ij
|
||||
double precision :: distance_i,distance_j,step_function_becke
|
||||
integer :: j
|
||||
if(int(nucl_charge(atom_number))==0)then
|
||||
cell_function_becke = 0.d0
|
||||
return
|
||||
endif
|
||||
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
|
||||
distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number))
|
||||
distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number))
|
||||
@ -38,6 +42,7 @@ double precision function cell_function_becke(r,atom_number)
|
||||
cell_function_becke = 1.d0
|
||||
do j = 1, nucl_num
|
||||
if(j==atom_number)cycle
|
||||
if(int(nucl_charge(j))==0)cycle
|
||||
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
|
||||
distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
|
||||
distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))
|
||||
|
@ -16,3 +16,10 @@ doc: Type of density
|
||||
doc: if [no_core_dm] then all elements of the density matrix involving at least one orbital set as core are set to zero
|
||||
interface: ezfio, provider, ocaml
|
||||
default: full_density
|
||||
|
||||
[normalize_dm]
|
||||
type: logical
|
||||
doc: Type of density
|
||||
doc: if .True., then you normalize the no_core_dm to elec_alpha_num - n_core_orb and elec_beta_num - n_core_orb
|
||||
interface: ezfio, provider, ocaml
|
||||
default: True
|
||||
|
@ -29,6 +29,20 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft, (mo_num,mo_num, N_s
|
||||
one_e_dm_mo_alpha_for_dft(i,j,:) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
if(normalize_dm)then
|
||||
double precision :: elec_alpha_frozen_num, elec_alpha_valence(N_states)
|
||||
elec_alpha_frozen_num = elec_alpha_num - n_core_orb
|
||||
elec_alpha_valence = 0.d0
|
||||
integer :: istate
|
||||
do istate = 1, N_states
|
||||
do i = 1, mo_num
|
||||
elec_alpha_valence(istate) += one_e_dm_mo_alpha_for_dft(i,i,istate)
|
||||
enddo
|
||||
elec_alpha_valence(istate) = elec_alpha_frozen_num/elec_alpha_valence(istate)
|
||||
one_e_dm_mo_alpha_for_dft(:,:,istate) = one_e_dm_mo_alpha_for_dft(:,:,istate) * elec_alpha_valence(istate)
|
||||
enddo
|
||||
|
||||
endif
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
@ -64,6 +78,19 @@ BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft, (mo_num,mo_num, N_st
|
||||
one_e_dm_mo_beta_for_dft(i,j,:) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
if(normalize_dm)then
|
||||
double precision :: elec_beta_valence(N_states),elec_beta_frozen_num
|
||||
elec_beta_frozen_num = elec_beta_num - n_core_orb
|
||||
elec_beta_valence = 0.d0
|
||||
integer :: istate
|
||||
do istate = 1, N_states
|
||||
do i = 1, mo_num
|
||||
elec_beta_valence(istate) += one_e_dm_mo_beta_for_dft(i,i,istate)
|
||||
enddo
|
||||
elec_beta_valence(istate) = elec_beta_frozen_num/elec_beta_valence(istate)
|
||||
one_e_dm_mo_beta_for_dft(:,:,istate) = one_e_dm_mo_beta_for_dft(:,:,istate) * elec_beta_valence(istate)
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -227,6 +227,8 @@ END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, one_e_dm_alpha_at_r, (n_points_final_grid,N_states) ]
|
||||
&BEGIN_PROVIDER [double precision, one_e_dm_beta_at_r, (n_points_final_grid,N_states) ]
|
||||
&BEGIN_PROVIDER [double precision, elec_beta_num_grid_becke , (N_states) ]
|
||||
&BEGIN_PROVIDER [double precision, elec_alpha_num_grid_becke , (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! one_e_dm_alpha_at_r(i,istate) = n_alpha(r_i,istate)
|
||||
|
@ -1,4 +1,4 @@
|
||||
BEGIN_PROVIDER [ double precision, slater_bragg_radii, (100)]
|
||||
BEGIN_PROVIDER [ double precision, slater_bragg_radii, (0:100)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! atomic radii in Angstrom defined in table I of JCP 41, 3199 (1964) Slater
|
||||
@ -54,10 +54,10 @@ BEGIN_PROVIDER [ double precision, slater_bragg_radii, (100)]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, slater_bragg_radii_ua, (100)]
|
||||
BEGIN_PROVIDER [double precision, slater_bragg_radii_ua, (0:100)]
|
||||
implicit none
|
||||
integer :: i
|
||||
do i = 1, 100
|
||||
do i = 0, 100
|
||||
slater_bragg_radii_ua(i) = slater_bragg_radii(i) * 1.889725989d0
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
Loading…
Reference in New Issue
Block a user