mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 11:33:29 +01:00
Fixed compilation problems
This commit is contained in:
parent
717b35cf38
commit
df4c9431d0
@ -82,3 +82,39 @@ BEGIN_PROVIDER [ double precision, select_max, (size_select_max) ]
|
||||
select_max = huge(1.d0)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, psi_coef_generators_complex, (psi_det_size,N_states) ]
|
||||
&BEGIN_PROVIDER [ complex*16, psi_coef_sorted_gen_complex, (psi_det_size,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! For Single reference wave functions, the generator is the
|
||||
! Hartree-Fock determinant
|
||||
END_DOC
|
||||
integer :: i, k, l, m
|
||||
logical :: good
|
||||
integer, external :: number_of_holes,number_of_particles
|
||||
integer, allocatable :: nongen(:)
|
||||
integer :: inongen
|
||||
|
||||
allocate(nongen(N_det))
|
||||
|
||||
inongen = 0
|
||||
m=0
|
||||
do i=1,N_det
|
||||
good = ( number_of_holes(psi_det_sorted(1,1,i)) ==0).and.(number_of_particles(psi_det_sorted(1,1,i))==0 )
|
||||
if (good) then
|
||||
m = m+1
|
||||
psi_coef_generators_complex(m,:) = psi_coef_sorted_complex(i,:)
|
||||
else
|
||||
inongen += 1
|
||||
nongen(inongen) = i
|
||||
endif
|
||||
enddo
|
||||
ASSERT (m == N_det_generators)
|
||||
|
||||
psi_coef_sorted_gen_complex(:N_det_generators, :) = psi_coef_generators_complex(:N_det_generators, :)
|
||||
do i=1,inongen
|
||||
psi_coef_sorted_gen_complex(N_det_generators+i, :) = psi_coef_sorted_complex(nongen(i),:)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,213 +0,0 @@
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_complex, (ao_num, ao_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_complex , (ao_num, ao_num) ]
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha and Beta Fock matrices in AO basis set
|
||||
END_DOC
|
||||
!TODO: finish implementing this: see complex qp1 (different mapping)
|
||||
|
||||
integer :: i,j,k,l,k1,r,s
|
||||
integer :: i0,j0,k0,l0
|
||||
integer*8 :: p,q
|
||||
complex*16 :: integral, c0
|
||||
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
|
||||
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:)
|
||||
|
||||
ao_two_e_integral_alpha_complex = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_complex = (0.d0,0.d0)
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
|
||||
integer(omp_lock_kind) :: lck(ao_num)
|
||||
integer(map_size_kind) :: i8
|
||||
integer :: ii(4), jj(4), kk(4), ll(4), k2
|
||||
integer(cache_map_size_kind) :: n_elements_max, n_elements
|
||||
integer(key_kind), allocatable :: keys(:)
|
||||
double precision, allocatable :: values(:)
|
||||
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
|
||||
integer(key_kind) :: key1
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
|
||||
!$OMP SCF_density_matrix_ao_beta_complex, &
|
||||
!$OMP ao_integrals_map, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
|
||||
! i<=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = values(k1)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
|
||||
!$OMP SCF_density_matrix_ao_beta_complex, &
|
||||
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map_2%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
|
||||
! i>=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = values(k1)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_alpha_complex, (ao_num, ao_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_beta_complex, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha Fock matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
Fock_matrix_ao_alpha_complex(i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_alpha_complex(i,j)
|
||||
Fock_matrix_ao_beta_complex (i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_beta_complex (i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
@ -146,3 +146,216 @@ BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_complex, (ao_num, ao_num) ]
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_complex, (ao_num, ao_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_complex , (ao_num, ao_num) ]
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha and Beta Fock matrices in AO basis set
|
||||
END_DOC
|
||||
!TODO: finish implementing this: see complex qp1 (different mapping)
|
||||
|
||||
integer :: i,j,k,l,k1,r,s
|
||||
integer :: i0,j0,k0,l0
|
||||
integer*8 :: p,q
|
||||
complex*16 :: integral, c0
|
||||
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
|
||||
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:)
|
||||
|
||||
ao_two_e_integral_alpha_complex = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_complex = (0.d0,0.d0)
|
||||
PROVIDE ao_two_e_integrals_in_map
|
||||
|
||||
integer(omp_lock_kind) :: lck(ao_num)
|
||||
integer(map_size_kind) :: i8
|
||||
integer :: ii(4), jj(4), kk(4), ll(4), k2
|
||||
integer(cache_map_size_kind) :: n_elements_max, n_elements
|
||||
integer(key_kind), allocatable :: keys(:)
|
||||
double precision, allocatable :: values(:)
|
||||
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
|
||||
integer(key_kind) :: key1
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
|
||||
!$OMP SCF_density_matrix_ao_beta_complex, &
|
||||
!$OMP ao_integrals_map, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
|
||||
! i<=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = values(k1)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
|
||||
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
|
||||
!$OMP c0,key1)&
|
||||
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
|
||||
!$OMP SCF_density_matrix_ao_beta_complex, &
|
||||
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
|
||||
|
||||
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
|
||||
allocate(keys(n_elements_max), values(n_elements_max))
|
||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||
|
||||
!$OMP DO SCHEDULE(static,1)
|
||||
do i8=0_8,ao_integrals_map_2%map_size
|
||||
n_elements = n_elements_max
|
||||
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
|
||||
do k1=1,n_elements
|
||||
! get original key
|
||||
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||
key1 = shiftr(keys(k1)+1,1)
|
||||
|
||||
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
|
||||
! i>=k, j<=l, ik<=jl
|
||||
! ijkl, jilk, klij*, lkji*
|
||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
|
||||
|
||||
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
else ! real part
|
||||
do k2=1,4
|
||||
if (ii(k2)==0) then
|
||||
cycle
|
||||
endif
|
||||
i = ii(k2)
|
||||
j = jj(k2)
|
||||
k = kk(k2)
|
||||
l = ll(k2)
|
||||
integral = values(k1)
|
||||
|
||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,k) += c0
|
||||
ao_two_e_integral_beta_tmp (i,k) += c0
|
||||
|
||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
!$OMP CRITICAL
|
||||
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
|
||||
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
|
||||
!$OMP END CRITICAL
|
||||
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_alpha_complex, (ao_num, ao_num) ]
|
||||
&BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_beta_complex, (ao_num, ao_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Alpha Fock matrix in AO basis set
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
do j=1,ao_num
|
||||
do i=1,ao_num
|
||||
Fock_matrix_ao_alpha_complex(i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_alpha_complex(i,j)
|
||||
Fock_matrix_ao_beta_complex (i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_beta_complex (i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -25,6 +25,7 @@ END_PROVIDER
|
||||
psi_det_generators(i,2,1) = HF_bitmask(i,2)
|
||||
enddo
|
||||
|
||||
! Search for HF determinant
|
||||
do j=1,N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,j),degree,N_int)
|
||||
if (degree == 0) then
|
||||
@ -55,4 +56,25 @@ BEGIN_PROVIDER [ integer, size_select_max ]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ complex*16, psi_coef_generators_complex, (psi_det_size,N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Complex variant of psi_coef_generators
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k
|
||||
integer :: degree
|
||||
|
||||
! Search for HF determinant
|
||||
do j=1,N_det
|
||||
call get_excitation_degree(HF_bitmask,psi_det(1,1,j),degree,N_int)
|
||||
if (degree == 0) then
|
||||
k = j
|
||||
exit
|
||||
endif
|
||||
end do
|
||||
|
||||
psi_coef_generators_complex(1,:) = psi_coef_generators_complex(j,:)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user