9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-02 08:35:38 +01:00

Merge pull request #321 from AbdAmmar/dev-stable

Dev stable
This commit is contained in:
Emmanuel Giner 2024-03-05 17:45:06 +01:00 committed by GitHub
commit df2d43d51c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 685 additions and 222 deletions

View File

@ -1,13 +1,13 @@
[j2e_type] [j2e_type]
type: character*(32) type: character*(32)
doc: type of the 2e-Jastrow: [ None | Mu | Mur | Qmckl ] doc: type of the 2e-Jastrow: [ None | Mu | Mu_Nu | Mur | Boys | Boys_Handy | Qmckl ]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: Mu default: Mu
[j1e_type] [j1e_type]
type: character*(32) type: character*(32)
doc: type of the 1e-Jastrow: [ None | Gauss | Charge_Harmonizer ] doc: type of the 1e-Jastrow: [ None | Gauss | Charge_Harmonizer | Charge_Harmonizer_AO ]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: None default: None
@ -151,3 +151,45 @@ interface: ezfio,provider,ocaml
default: 1.0 default: 1.0
ezfio_name: nu_erf ezfio_name: nu_erf
[jBH_size]
type: integer
doc: number of terms per atom in Boys-Handy-Jastrow
interface: ezfio,provider,ocaml
default: 1
[jBH_c]
type: double precision
doc: coefficients of terms in Boys-Handy-Jastrow
interface: ezfio
size: (jastrow.jBH_size,nuclei.nucl_num)
[jBH_m]
type: integer
doc: powers of terms in Boys-Handy-Jastrow
interface: ezfio
size: (jastrow.jBH_size,nuclei.nucl_num)
[jBH_n]
type: integer
doc: powers of terms in Boys-Handy-Jastrow
interface: ezfio
size: (jastrow.jBH_size,nuclei.nucl_num)
[jBH_o]
type: integer
doc: powers of terms in Boys-Handy-Jastrow
interface: ezfio
size: (jastrow.jBH_size,nuclei.nucl_num)
[jBH_ee]
type: double precision
doc: parameters of e-e terms in Boys-Handy-Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[jBH_en]
type: double precision
doc: parameters of e-n terms in Boys-Handy-Jastrow
interface: ezfio
size: (nuclei.nucl_num)

View File

@ -0,0 +1,252 @@
BEGIN_PROVIDER [double precision, jBH_ee, (nucl_num)]
&BEGIN_PROVIDER [double precision, jBH_en, (nucl_num)]
&BEGIN_PROVIDER [double precision, jBH_c , (jBH_size, nucl_num)]
&BEGIN_PROVIDER [integer , jBH_m , (jBH_size, nucl_num)]
&BEGIN_PROVIDER [integer , jBH_n , (jBH_size, nucl_num)]
&BEGIN_PROVIDER [integer , jBH_o , (jBH_size, nucl_num)]
BEGIN_DOC
!
! parameters of Boys-Handy-Jastrow
!
END_DOC
implicit none
logical :: exists
integer :: i_nucl, p
integer :: ierr
PROVIDE ezfio_filename
! ---
if(mpi_master) then
call ezfio_has_jastrow_jBH_ee(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(jBH_ee, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read Boys-Handy e-e param with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: jBH_ee ] <<<<< ..'
call ezfio_get_jastrow_jBH_ee(jBH_ee)
IRP_IF MPI
call MPI_BCAST(jBH_ee, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read jBH_ee with MPI'
endif
IRP_ENDIF
endif
else
jBH_ee = 1.d0
call ezfio_set_jastrow_jBH_ee(jBH_ee)
endif
! ---
if(mpi_master) then
call ezfio_has_jastrow_jBH_en(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(jBH_en, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read Boys-Handy e-n param with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: jBH_en ] <<<<< ..'
call ezfio_get_jastrow_jBH_en(jBH_en)
IRP_IF MPI
call MPI_BCAST(jBH_en, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read jBH_en with MPI'
endif
IRP_ENDIF
endif
else
jBH_en = 1.d0
call ezfio_set_jastrow_jBH_en(jBH_en)
endif
! ---
if(mpi_master) then
call ezfio_has_jastrow_jBH_c(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(jBH_c, (jBH_size*nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read Boys-Handy coeff with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: jBH_c ] <<<<< ..'
call ezfio_get_jastrow_jBH_c(jBH_c)
IRP_IF MPI
call MPI_BCAST(jBH_c, (jBH_size*nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read jBH_c with MPI'
endif
IRP_ENDIF
endif
else
jBH_c = 0.d0
call ezfio_set_jastrow_jBH_c(jBH_c)
endif
! ---
if(mpi_master) then
call ezfio_has_jastrow_jBH_m(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(jBH_m, (jBH_size*nucl_num), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read Boys-Handy m powers with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: jBH_m ] <<<<< ..'
call ezfio_get_jastrow_jBH_m(jBH_m)
IRP_IF MPI
call MPI_BCAST(jBH_m, (jBH_size*nucl_num), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read jBH_m with MPI'
endif
IRP_ENDIF
endif
else
jBH_m = 0
call ezfio_set_jastrow_jBH_m(jBH_m)
endif
! ---
if(mpi_master) then
call ezfio_has_jastrow_jBH_n(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(jBH_n, (jBH_size*nucl_num), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read Boys-Handy n powers with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: jBH_n ] <<<<< ..'
call ezfio_get_jastrow_jBH_n(jBH_n)
IRP_IF MPI
call MPI_BCAST(jBH_n, (jBH_size*nucl_num), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read jBH_n with MPI'
endif
IRP_ENDIF
endif
else
jBH_n = 0
call ezfio_set_jastrow_jBH_n(jBH_n)
endif
! ---
if(mpi_master) then
call ezfio_has_jastrow_jBH_o(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(jBH_o, (jBH_size*nucl_num), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read Boys-Handy o powers with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: jBH_o ] <<<<< ..'
call ezfio_get_jastrow_jBH_o(jBH_o)
IRP_IF MPI
call MPI_BCAST(jBH_o, (jBH_size*nucl_num), MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if(ierr /= MPI_SUCCESS) then
stop 'Unable to read jBH_o with MPI'
endif
IRP_ENDIF
endif
else
jBH_o = 0
call ezfio_set_jastrow_jBH_o(jBH_o)
endif
! ---
print *, ' parameters for Boys-Handy Jastrow'
print *, ' nb of terms per nucleus = ', jBH_size
do i_nucl = 1, nucl_num
print *, ' nucl = ', nucl_label(i_nucl)
print *, ' ee-term = ', jBH_ee(i_nucl)
print *, ' en-term = ', jBH_en(i_nucl)
print *, ' m n o c'
do p = 1, jBH_size
write(*,'(3(I4,2x), E15.7)') jBH_m(p,i_nucl), jBH_n(p,i_nucl), jBH_o(p,i_nucl), jBH_c(p,i_nucl)
enddo
enddo
END_PROVIDER
! ---

View File

@ -109,6 +109,14 @@ subroutine get_grad1_u12_withsq_r1_seq(ipoint, n_grid2, resx, resy, resz, res)
endif ! env_type endif ! env_type
elseif(j2e_type .eq. "Boys_Handy") then
PROVIDE jBH_size jBH_en jBH_ee jBH_m jBH_n jBH_o jBH_c
if(env_type .eq. "None") then
call grad1_j12_r1_seq(r1, n_grid2, resx, resy, resz)
endif ! env_type
else else
print *, ' Error in get_grad1_u12_withsq_r1_seq: Unknown Jastrow' print *, ' Error in get_grad1_u12_withsq_r1_seq: Unknown Jastrow'
@ -157,9 +165,13 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
double precision, intent(out) :: gradz(n_grid2) double precision, intent(out) :: gradz(n_grid2)
integer :: jpoint integer :: jpoint
integer :: i_nucl, p, mpA, npA, opA
double precision :: r2(3) double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp double precision :: dx, dy, dz, r12, tmp
double precision :: mu_val, mu_tmp, mu_der(3) double precision :: mu_val, mu_tmp, mu_der(3)
double precision :: rn(3), f1A, gard1_f1A(3), f2A, gard2_f2A(3), g12, gard1_g12(3)
double precision :: tmp1, tmp2
PROVIDE j2e_type PROVIDE j2e_type
@ -267,6 +279,57 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
gradz(jpoint) = tmp * dz gradz(jpoint) = tmp * dz
enddo enddo
elseif(j2e_type .eq. "Boys_Handy") then
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
do i_nucl = 1, nucl_num
rn(1) = nucl_coord(i_nucl,1)
rn(2) = nucl_coord(i_nucl,2)
rn(3) = nucl_coord(i_nucl,3)
call jBH_elem_fct_grad(jBH_en(i_nucl), r1, rn, f1A, gard1_f1A)
call jBH_elem_fct_grad(jBH_en(i_nucl), r2, rn, f2A, gard2_f2A)
call jBH_elem_fct_grad(jBH_ee(i_nucl), r1, r2, g12, gard1_g12)
do p = 1, jBH_size
mpA = jBH_m(p,i_nucl)
npA = jBH_n(p,i_nucl)
opA = jBH_o(p,i_nucl)
tmp = jBH_c(p,i_nucl)
if(mpA .eq. npA) then
tmp = tmp * 0.5d0
endif
tmp1 = 0.d0
if(mpA .gt. 0) then
tmp1 = tmp1 + dble(mpA) * f1A**dble(mpA-1) * f2A**dble(npA)
endif
if(npA .gt. 0) then
tmp1 = tmp1 + dble(npA) * f1A**dble(npA-1) * f2A**dble(mpA)
endif
tmp1 = tmp1 * g12**dble(opA)
tmp2 = 0.d0
if(opA .gt. 0) then
tmp2 = tmp2 + dble(opA) * g12**dble(opA-1) * (f1A**dble(mpA) * f2A**dble(npA) + f1A**dble(npA) * f2A**dble(mpA))
endif
gradx(jpoint) = gradx(jpoint) + tmp * (tmp1 * gard1_f1A(1) + tmp2 * gard1_g12(1))
grady(jpoint) = grady(jpoint) + tmp * (tmp1 * gard1_f1A(2) + tmp2 * gard1_g12(2))
gradz(jpoint) = gradz(jpoint) + tmp * (tmp1 * gard1_f1A(3) + tmp2 * gard1_g12(3))
enddo ! p
enddo ! i_nucl
enddo ! jpoint
else else
print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type
@ -757,3 +820,34 @@ end
! --- ! ---
subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, gard1_fct)
implicit none
double precision, intent(in) :: alpha, r1(3), r2(3)
double precision, intent(out) :: fct, gard1_fct(3)
double precision :: dist, tmp1, tmp2
dist = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
tmp1 = 1.d0 / (1.d0 + alpha * dist)
fct = alpha * dist * tmp1
if(dist .lt. 1d-10) then
gard1_fct(1) = 0.d0
gard1_fct(2) = 0.d0
gard1_fct(3) = 0.d0
else
tmp2 = alpha * tmp1 * tmp1 / dist
gard1_fct(1) = tmp2 * (r1(1) - r2(1))
gard1_fct(2) = tmp2 * (r1(2) - r2(2))
gard1_fct(3) = tmp2 * (r1(3) - r2(3))
endif
return
end
! ---

View File

@ -8,8 +8,13 @@ subroutine provide_all_three_ints_bi_ortho()
END_DOC END_DOC
implicit none implicit none
double precision :: t1, t2
PROVIDE ao_two_e_integrals_in_map PROVIDE ao_two_e_integrals_in_map
print *, ' start provide_all_three_ints_bi_ortho'
call wall_time(t1)
if(three_body_h_tc) then if(three_body_h_tc) then
if(three_e_3_idx_term) then if(three_e_3_idx_term) then
@ -32,6 +37,9 @@ subroutine provide_all_three_ints_bi_ortho()
endif endif
call wall_time(t2)
print *, ' end provide_all_three_ints_bi_ortho after (min) = ', (t2-t1)/60.d0
return return
end end
@ -83,8 +91,11 @@ subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree,
integer, intent(in) :: Nint integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: degree integer :: degree
PROVIDE pure_three_body_h_tc
hmono = 0.d0 hmono = 0.d0
htwoe = 0.d0 htwoe = 0.d0
htot = 0.d0 htot = 0.d0

View File

@ -15,6 +15,8 @@
implicit none implicit none
double precision :: hmono, htwoe, htot, hthree double precision :: hmono, htwoe, htot, hthree
PROVIDE N_int
PROVIDE HF_bitmask
PROVIDE mo_l_coef mo_r_coef PROVIDE mo_l_coef mo_r_coef
call diag_htilde_mu_mat_bi_ortho_slow(N_int, HF_bitmask, hmono, htwoe, htot) call diag_htilde_mu_mat_bi_ortho_slow(N_int, HF_bitmask, hmono, htwoe, htot)

View File

@ -19,6 +19,7 @@ subroutine single_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe,
integer, intent(in) :: Nint integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2) integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: occ(Nint*bit_kind_size,2) integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
integer :: degree,exc(0:2,2,2) integer :: degree,exc(0:2,2,2)
@ -44,27 +45,28 @@ subroutine single_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe,
call bitstring_to_list_ab(key_i, occ, Ne, Nint) call bitstring_to_list_ab(key_i, occ, Ne, Nint)
call get_single_excitation(key_i, key_j, exc, phase, Nint) call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc, 1, h1, p1, h2, p2, s1, s2) call decode_exc(exc, 1, h1, p1, h2, p2, s1, s2)
call get_single_excitation_from_fock_tc(key_i, key_j, h1, p1, s1, phase, hmono, htwoe, hthree, htot) call get_single_excitation_from_fock_tc(Nint, key_i, key_j, h1, p1, s1, phase, hmono, htwoe, hthree, htot)
end end
! --- ! ---
subroutine get_single_excitation_from_fock_tc(key_i, key_j, h, p, spin, phase, hmono, htwoe, hthree, htot) subroutine get_single_excitation_from_fock_tc(Nint, key_i, key_j, h, p, spin, phase, hmono, htwoe, hthree, htot)
use bitmasks use bitmasks
implicit none implicit none
integer, intent(in) :: Nint
integer, intent(in) :: h, p, spin integer, intent(in) :: h, p, spin
double precision, intent(in) :: phase double precision, intent(in) :: phase
integer(bit_kind), intent(in) :: key_i(N_int,2), key_j(N_int,2) integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hmono, htwoe, hthree, htot double precision, intent(out) :: hmono, htwoe, hthree, htot
integer(bit_kind) :: differences(N_int,2) integer(bit_kind) :: differences(Nint,2)
integer(bit_kind) :: hole(N_int,2) integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: partcl(N_int,2) integer(bit_kind) :: partcl(Nint,2)
integer :: occ_hole(N_int*bit_kind_size,2) integer :: occ_hole(Nint*bit_kind_size,2)
integer :: occ_partcl(N_int*bit_kind_size,2) integer :: occ_partcl(Nint*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2) integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
integer :: i0,i integer :: i0,i
double precision :: buffer_c(mo_num),buffer_x(mo_num) double precision :: buffer_c(mo_num),buffer_x(mo_num)
@ -74,7 +76,7 @@ subroutine get_single_excitation_from_fock_tc(key_i, key_j, h, p, spin, phase, h
buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h) buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h)
enddo enddo
do i = 1, N_int do i = 1, Nint
differences(i,1) = xor(key_i(i,1), ref_closed_shell_bitmask(i,1)) differences(i,1) = xor(key_i(i,1), ref_closed_shell_bitmask(i,1))
differences(i,2) = xor(key_i(i,2), ref_closed_shell_bitmask(i,2)) differences(i,2) = xor(key_i(i,2), ref_closed_shell_bitmask(i,2))
hole (i,1) = iand(differences(i,1), ref_closed_shell_bitmask(i,1)) hole (i,1) = iand(differences(i,1), ref_closed_shell_bitmask(i,1))
@ -83,8 +85,8 @@ subroutine get_single_excitation_from_fock_tc(key_i, key_j, h, p, spin, phase, h
partcl (i,2) = iand(differences(i,2), key_i(i,2)) partcl (i,2) = iand(differences(i,2), key_i(i,2))
enddo enddo
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int) call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, Nint)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int) call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, Nint)
hmono = mo_bi_ortho_tc_one_e(p,h) hmono = mo_bi_ortho_tc_one_e(p,h)
htwoe = fock_op_2_e_tc_closed_shell(p,h) htwoe = fock_op_2_e_tc_closed_shell(p,h)
@ -122,7 +124,7 @@ subroutine get_single_excitation_from_fock_tc(key_i, key_j, h, p, spin, phase, h
hthree = 0.d0 hthree = 0.d0
if (three_body_h_tc .and. elec_num.gt.2 .and. three_e_4_idx_term) then if (three_body_h_tc .and. elec_num.gt.2 .and. three_e_4_idx_term) then
call three_comp_fock_elem(key_i, h, p, spin, hthree) call three_comp_fock_elem(Nint, key_i, h, p, spin, hthree)
endif endif
htwoe = htwoe * phase htwoe = htwoe * phase
@ -134,24 +136,27 @@ end
! --- ! ---
subroutine three_comp_fock_elem(key_i,h_fock,p_fock,ispin_fock,hthree) subroutine three_comp_fock_elem(Nint, key_i, h_fock, p_fock, ispin_fock, hthree)
implicit none
integer,intent(in) :: h_fock,p_fock,ispin_fock
integer(bit_kind), intent(in) :: key_i(N_int,2)
double precision, intent(out) :: hthree
integer :: nexc(2),i,ispin,na,nb
integer(bit_kind) :: hole(N_int,2)
integer(bit_kind) :: particle(N_int,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_particle(N_int*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
integer(bit_kind) :: det_tmp(N_int,2)
implicit none
integer, intent(in) :: Nint
integer, intent(in) :: h_fock, p_fock, ispin_fock
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: nexc(2),i,ispin,na,nb
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2)
integer :: occ_hole(Nint*bit_kind_size,2)
integer :: occ_particle(Nint*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
integer(bit_kind) :: det_tmp(Nint,2)
nexc(1) = 0 nexc(1) = 0
nexc(2) = 0 nexc(2) = 0
!! Get all the holes and particles of key_i with respect to the ROHF determinant !! Get all the holes and particles of key_i with respect to the ROHF determinant
do i=1,N_int do i = 1, Nint
hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1)) hole(i,1) = xor(key_i(i,1),ref_bitmask(i,1))
hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2)) hole(i,2) = xor(key_i(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),key_i(i,1)) particle(i,1) = iand(hole(i,1),key_i(i,1))
@ -161,13 +166,14 @@ subroutine three_comp_fock_elem(key_i,h_fock,p_fock,ispin_fock,hthree)
nexc(1) = nexc(1) + popcnt(hole(i,1)) nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2)) nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo enddo
integer :: tmp(2) integer :: tmp(2)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, N_int) call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, N_int) call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
@ -183,13 +189,16 @@ subroutine three_comp_fock_elem(key_i,h_fock,p_fock,ispin_fock,hthree)
nb = elec_num_tab(iand(ispin,1)+1) nb = elec_num_tab(iand(ispin,1)+1)
do i = 1, nexc(ispin) do i = 1, nexc(ispin)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call fock_ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, N_int,na,nb) call fock_ac_tc_operator( occ_particle(i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, Nint, na, nb)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call fock_a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, N_int,na,nb) call fock_a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, h_fock,p_fock, ispin_fock, hthree, Nint, na, nb)
enddo enddo
enddo enddo
end end
! ---
subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,Nint,na,nb) subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,Nint,na,nb)
use bitmasks use bitmasks
implicit none implicit none
@ -365,12 +374,18 @@ subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,N
end end
! ---
BEGIN_PROVIDER [double precision, fock_op_2_e_tc_closed_shell, (mo_num, mo_num)] BEGIN_PROVIDER [double precision, fock_op_2_e_tc_closed_shell, (mo_num, mo_num)]
implicit none
BEGIN_DOC BEGIN_DOC
! Closed-shell part of the Fock operator for the TC operator ! Closed-shell part of the Fock operator for the TC operator
END_DOC END_DOC
implicit none
PROVIDE N_int
integer :: h0,p0,h,p,k0,k,i integer :: h0,p0,h,p,k0,k,i
integer :: n_occ_ab(2) integer :: n_occ_ab(2)
integer :: occ(N_int*bit_kind_size,2) integer :: occ(N_int*bit_kind_size,2)
@ -382,6 +397,7 @@ BEGIN_PROVIDER [double precision, fock_op_2_e_tc_closed_shell, (mo_num, mo_num)
fock_op_2_e_tc_closed_shell = -1000.d0 fock_op_2_e_tc_closed_shell = -1000.d0
call bitstring_to_list_ab(ref_closed_shell_bitmask, occ, n_occ_ab, N_int) call bitstring_to_list_ab(ref_closed_shell_bitmask, occ, n_occ_ab, N_int)
do i = 1, N_int do i = 1, N_int
key_virt(i,1) = full_ijkl_bitmask(i) key_virt(i,1) = full_ijkl_bitmask(i)
key_virt(i,2) = full_ijkl_bitmask(i) key_virt(i,2) = full_ijkl_bitmask(i)
@ -477,8 +493,10 @@ BEGIN_PROVIDER [double precision, fock_op_2_e_tc_closed_shell, (mo_num, mo_num)
END_PROVIDER END_PROVIDER
! ---
subroutine single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot) subroutine single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
BEGIN_DOC BEGIN_DOC
! <key_j |H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS ! <key_j |H_tilde | key_i> for single excitation ONLY FOR ONE- AND TWO-BODY TERMS
!! !!
@ -493,6 +511,7 @@ subroutine single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
integer, intent(in) :: Nint integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2) integer(bit_kind), intent(in) :: key_j(Nint,2), key_i(Nint,2)
double precision, intent(out) :: htot double precision, intent(out) :: htot
double precision :: hmono, htwoe double precision :: hmono, htwoe
integer :: occ(Nint*bit_kind_size,2) integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
@ -517,30 +536,38 @@ subroutine single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot)
call get_single_excitation(key_i, key_j, exc, phase, Nint) call get_single_excitation(key_i, key_j, exc, phase, Nint)
call decode_exc(exc,1,h1,p1,h2,p2,s1,s2) call decode_exc(exc,1,h1,p1,h2,p2,s1,s2)
call get_single_excitation_from_fock_tc_no_3e(key_i,key_j,h1,p1,s1,phase,hmono,htwoe,htot) call get_single_excitation_from_fock_tc_no_3e(Nint, key_i, key_j, h1, p1, s1, phase, hmono, htwoe, htot)
end end
! ---
subroutine get_single_excitation_from_fock_tc_no_3e(Nint, key_i, key_j, h, p, spin, phase, hmono, htwoe, htot)
subroutine get_single_excitation_from_fock_tc_no_3e(key_i,key_j,h,p,spin,phase,hmono,htwoe,htot)
use bitmasks use bitmasks
implicit none implicit none
integer, intent(in) :: Nint
integer, intent(in) :: h, p, spin integer, intent(in) :: h, p, spin
double precision, intent(in) :: phase double precision, intent(in) :: phase
integer(bit_kind), intent(in) :: key_i(N_int,2), key_j(N_int,2) integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hmono,htwoe,htot double precision, intent(out) :: hmono,htwoe,htot
integer(bit_kind) :: differences(N_int,2)
integer(bit_kind) :: hole(N_int,2) integer(bit_kind) :: differences(Nint,2)
integer(bit_kind) :: partcl(N_int,2) integer(bit_kind) :: hole(Nint,2)
integer :: occ_hole(N_int*bit_kind_size,2) integer(bit_kind) :: partcl(Nint,2)
integer :: occ_partcl(N_int*bit_kind_size,2) integer :: occ_hole(Nint*bit_kind_size,2)
integer :: occ_partcl(Nint*bit_kind_size,2)
integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2) integer :: n_occ_ab_hole(2),n_occ_ab_partcl(2)
integer :: i0,i integer :: i0,i
double precision :: buffer_c(mo_num), buffer_x(mo_num) double precision :: buffer_c(mo_num), buffer_x(mo_num)
do i = 1, mo_num do i = 1, mo_num
buffer_c(i) = tc_2e_3idx_coulomb_integrals(i,p,h) buffer_c(i) = tc_2e_3idx_coulomb_integrals(i,p,h)
buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h) buffer_x(i) = tc_2e_3idx_exchange_integrals(i,p,h)
enddo enddo
do i = 1, N_int
do i = 1, Nint
differences(i,1) = xor(key_i(i,1),ref_closed_shell_bitmask(i,1)) differences(i,1) = xor(key_i(i,1),ref_closed_shell_bitmask(i,1))
differences(i,2) = xor(key_i(i,2),ref_closed_shell_bitmask(i,2)) differences(i,2) = xor(key_i(i,2),ref_closed_shell_bitmask(i,2))
hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1)) hole(i,1) = iand(differences(i,1),ref_closed_shell_bitmask(i,1))
@ -548,10 +575,12 @@ subroutine get_single_excitation_from_fock_tc_no_3e(key_i,key_j,h,p,spin,phase,h
partcl(i,1) = iand(differences(i,1),key_i(i,1)) partcl(i,1) = iand(differences(i,1),key_i(i,1))
partcl(i,2) = iand(differences(i,2),key_i(i,2)) partcl(i,2) = iand(differences(i,2),key_i(i,2))
enddo enddo
call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, N_int)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, N_int) call bitstring_to_list_ab(hole, occ_hole, n_occ_ab_hole, Nint)
call bitstring_to_list_ab(partcl, occ_partcl, n_occ_ab_partcl, Nint)
hmono = mo_bi_ortho_tc_one_e(p,h) hmono = mo_bi_ortho_tc_one_e(p,h)
htwoe = fock_op_2_e_tc_closed_shell(p,h) htwoe = fock_op_2_e_tc_closed_shell(p,h)
! holes :: direct terms ! holes :: direct terms
do i0 = 1, n_occ_ab_hole(1) do i0 = 1, n_occ_ab_hole(1)
i = occ_hole(i0,1) i = occ_hole(i0,1)

View File

@ -7,6 +7,10 @@ program tc_bi_ortho
! !
END_DOC END_DOC
implicit none
PROVIDE N_int
my_grid_becke = .True. my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r my_n_pt_r_grid = tc_grid1_r
@ -66,6 +70,15 @@ subroutine routine_diag()
! provide overlap_bi_ortho ! provide overlap_bi_ortho
! provide htilde_matrix_elmt_bi_ortho ! provide htilde_matrix_elmt_bi_ortho
if(noL_standard) then
PROVIDE noL_0e
PROVIDE noL_1e
PROVIDE noL_2e
endif
PROVIDE htilde_matrix_elmt_bi_ortho
return
if(N_states .eq. 1) then if(N_states .eq. 1) then
print*,'eigval_right_tc_bi_orth = ',eigval_right_tc_bi_orth(1) print*,'eigval_right_tc_bi_orth = ',eigval_right_tc_bi_orth(1)

View File

@ -13,16 +13,34 @@ BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho, (N_det,N_det)]
implicit none implicit none
integer :: i, j integer :: i, j
double precision :: t1, t2
double precision :: htot double precision :: htot
call provide_all_three_ints_bi_ortho PROVIDE N_int
PROVIDE psi_det
PROVIDE three_e_3_idx_term
if(noL_standard) then
PROVIDE noL_0e
PROVIDE noL_1e
PROVIDE noL_2e
endif
print *, ' PROVIDING htilde_matrix_elmt_bi_ortho ...'
call wall_time(t1)
call provide_all_three_ints_bi_ortho()
i = 1 i = 1
j = 1 j = 1
call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot) call htilde_mu_mat_opt_bi_ortho_tot(psi_det(1,1,j), psi_det(1,1,i), N_int, htot)
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j, htot) &
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(i, j, htot) &
!$OMP SHARED (N_det, psi_det, N_int, htilde_matrix_elmt_bi_ortho) !$OMP SHARED (N_det, psi_det, N_int, htilde_matrix_elmt_bi_ortho)
!$OMP DO
do i = 1, N_det do i = 1, N_det
do j = 1, N_det do j = 1, N_det
! < J |Htilde | I > ! < J |Htilde | I >
@ -31,7 +49,11 @@ BEGIN_PROVIDER [double precision, htilde_matrix_elmt_bi_ortho, (N_det,N_det)]
htilde_matrix_elmt_bi_ortho(j,i) = htot htilde_matrix_elmt_bi_ortho(j,i) = htot
enddo enddo
enddo enddo
!$OMP END PARALLEL DO !$OMP END DO
!$OMP END PARALLEL
call wall_time(t2)
print *, ' wall time for htilde_matrix_elmt_bi_ortho (min) =', (t2-t1)/60.d0
END_PROVIDER END_PROVIDER

View File

@ -2,3 +2,10 @@
type: Threshold type: Threshold
doc: Energy bi-tc HF doc: Energy bi-tc HF
interface: ezfio interface: ezfio
[converged_tcscf]
type: logical
doc: If |true|, tc-scf has converged
interface: ezfio,provider,ocaml
default: False

View File

@ -22,6 +22,9 @@ subroutine rh_tcscf_diis()
logical, external :: qp_stop logical, external :: qp_stop
PROVIDE level_shift_TCSCF
PROVIDE mo_l_coef mo_r_coef
it = 0 it = 0
e_save = 0.d0 e_save = 0.d0
dim_DIIS = 0 dim_DIIS = 0
@ -41,19 +44,6 @@ subroutine rh_tcscf_diis()
! --- ! ---
PROVIDE level_shift_TCSCF
PROVIDE mo_l_coef mo_r_coef
!write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
! '====', '================', '================', '================', '================', '================' &
! , '================', '================', '================', '====', '========'
!write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
! ' it ', ' SCF TC Energy ', ' E(1e) ', ' E(2e) ', ' E(3e) ', ' energy diff ' &
! , ' gradient ', ' DIIS error ', ' level shift ', 'DIIS', ' WT (m)'
!write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
! '====', '================', '================', '================', '================', '================' &
! , '================', '================', '================', '====', '========'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') & write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
'====', '================', '================', '================', '================', '================' & '====', '================', '================', '================', '================', '================' &
, '================', '================', '====', '========' , '================', '================', '====', '========'
@ -81,8 +71,6 @@ subroutine rh_tcscf_diis()
er_save = er_DIIS er_save = er_DIIS
call wall_time(t1) call wall_time(t1)
!write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
! it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') & write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0 it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
@ -91,6 +79,8 @@ subroutine rh_tcscf_diis()
PROVIDE FQS_SQF_ao Fock_matrix_tc_ao_tot PROVIDE FQS_SQF_ao Fock_matrix_tc_ao_tot
converged = .false. converged = .false.
call ezfio_set_tc_scf_converged_tcscf(converged)
!do while((tc_grad .gt. dsqrt(thresh_tcscf)) .and. (er_DIIS .gt. dsqrt(thresh_tcscf))) !do while((tc_grad .gt. dsqrt(thresh_tcscf)) .and. (er_DIIS .gt. dsqrt(thresh_tcscf)))
do while(.not. converged) do while(.not. converged)
@ -255,6 +245,7 @@ subroutine rh_tcscf_diis()
if(converged) then if(converged) then
write(json_unit, json_true_fmtx) 'converged' write(json_unit, json_true_fmtx) 'converged'
call ezfio_set_tc_scf_converged_tcscf(converged)
else else
write(json_unit, json_false_fmtx) 'converged' write(json_unit, json_false_fmtx) 'converged'
endif endif