9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-01 21:53:40 +02:00

Merge pull request #234 from eginer/dev
Some checks failed
continuous-integration/drone/push Build is failing

added the possibility of point charges in the Hamiltonian
This commit is contained in:
Anthony Scemama 2023-01-19 17:03:29 +01:00 committed by GitHub
commit de3b42551f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
23 changed files with 1884 additions and 119 deletions

View File

@ -991,4 +991,266 @@ D 1
1 1.3743000 1.0000000 1 1.3743000 1.0000000
D 1 D 1
1 0.0537000 1.00000000 1 0.0537000 1.00000000
$END
COPPER
S 20
1 5.430321E+06 7.801026E-06
2 8.131665E+05 6.065666E-05
3 1.850544E+05 3.188964E-04
4 5.241466E+04 1.344687E-03
5 1.709868E+04 4.869050E-03
6 6.171994E+03 1.561013E-02
7 2.406481E+03 4.452077E-02
8 9.972584E+02 1.103111E-01
9 4.339289E+02 2.220342E-01
10 1.962869E+02 3.133739E-01
11 9.104280E+01 2.315121E-01
12 4.138425E+01 7.640920E-02
13 1.993278E+01 1.103818E-01
14 9.581891E+00 1.094372E-01
15 4.234516E+00 1.836311E-02
16 1.985814E+00 -6.043084E-04
17 8.670830E-01 5.092245E-05
18 1.813390E-01 -5.540730E-05
19 8.365700E-02 3.969482E-05
20 3.626700E-02 -1.269538E-05
S 20
1 5.430321E+06 -4.404706E-06
2 8.131665E+05 -3.424801E-05
3 1.850544E+05 -1.801238E-04
4 5.241466E+04 -7.600455E-04
5 1.709868E+04 -2.759348E-03
6 6.171994E+03 -8.900970E-03
7 2.406481E+03 -2.579378E-02
8 9.972584E+02 -6.623861E-02
9 4.339289E+02 -1.445927E-01
10 1.962869E+02 -2.440110E-01
11 9.104280E+01 -2.504837E-01
12 4.138425E+01 2.852577E-02
13 1.993278E+01 5.115874E-01
14 9.581891E+00 4.928061E-01
15 4.234516E+00 8.788437E-02
16 1.985814E+00 -5.820281E-03
17 8.670830E-01 2.013508E-04
18 1.813390E-01 -5.182553E-04
19 8.365700E-02 3.731503E-04
20 3.626700E-02 -1.193171E-04
S 20
1 5.430321E+06 9.704682E-07
2 8.131665E+05 7.549245E-06
3 1.850544E+05 3.968892E-05
4 5.241466E+04 1.677200E-04
5 1.709868E+04 6.095101E-04
6 6.171994E+03 1.978846E-03
7 2.406481E+03 5.798049E-03
8 9.972584E+02 1.534158E-02
9 4.339289E+02 3.540484E-02
10 1.962869E+02 6.702098E-02
11 9.104280E+01 8.026945E-02
12 4.138425E+01 -1.927231E-02
13 1.993278E+01 -3.160129E-01
14 9.581891E+00 -4.573162E-01
15 4.234516E+00 1.550841E-01
16 1.985814E+00 7.202872E-01
17 8.670830E-01 3.885122E-01
18 1.813390E-01 1.924326E-02
19 8.365700E-02 -7.103807E-03
20 3.626700E-02 3.272906E-03
S 20
1 5.430321E+06 -1.959354E-07
2 8.131665E+05 -1.523472E-06
3 1.850544E+05 -8.014808E-06
4 5.241466E+04 -3.383992E-05
5 1.709868E+04 -1.231191E-04
6 6.171994E+03 -3.992085E-04
7 2.406481E+03 -1.171900E-03
8 9.972584E+02 -3.096141E-03
9 4.339289E+02 -7.171993E-03
10 1.962869E+02 -1.356621E-02
11 9.104280E+01 -1.643989E-02
12 4.138425E+01 4.107628E-03
13 1.993278E+01 6.693964E-02
14 9.581891E+00 1.028221E-01
15 4.234516E+00 -4.422945E-02
16 1.985814E+00 -2.031191E-01
17 8.670830E-01 -2.230022E-01
18 1.813390E-01 2.517975E-01
19 8.365700E-02 5.650091E-01
20 3.626700E-02 3.247243E-01
S 20
1 5.430321E+06 -7.508267E-07
2 8.131665E+05 -5.972018E-06
3 1.850544E+05 -3.039682E-05
4 5.241466E+04 -1.340405E-04
5 1.709868E+04 -4.615778E-04
6 6.171994E+03 -1.601064E-03
7 2.406481E+03 -4.330942E-03
8 9.972584E+02 -1.265434E-02
9 4.339289E+02 -2.586864E-02
10 1.962869E+02 -5.835428E-02
11 9.104280E+01 -5.132322E-02
12 4.138425E+01 -1.908953E-02
13 1.993278E+01 3.586116E-01
14 9.581891E+00 3.885818E-01
15 4.234516E+00 -3.057106E-01
16 1.985814E+00 -2.069896E+00
17 8.670830E-01 2.431774E+00
18 1.813390E-01 -2.121974E-02
19 8.365700E-02 -1.820251E+00
20 3.626700E-02 1.434585E+00
S 20
1 5.430321E+06 -3.532229E-07
2 8.131665E+05 -2.798812E-06
3 1.850544E+05 -1.432517E-05
4 5.241466E+04 -6.270946E-05
5 1.709868E+04 -2.179490E-04
6 6.171994E+03 -7.474316E-04
7 2.406481E+03 -2.049271E-03
8 9.972584E+02 -5.885203E-03
9 4.339289E+02 -1.226885E-02
10 1.962869E+02 -2.683147E-02
11 9.104280E+01 -2.479261E-02
12 4.138425E+01 -5.984746E-03
13 1.993278E+01 1.557124E-01
14 9.581891E+00 1.436683E-01
15 4.234516E+00 8.374103E-03
16 1.985814E+00 -7.460711E-01
17 8.670830E-01 1.244367E-01
18 1.813390E-01 1.510110E+00
19 8.365700E-02 -3.477122E-01
20 3.626700E-02 -9.774169E-01
S 1
1 3.626700E-02 1.000000E+00
S 1
1 0.0157200 1.0000000
P 16
1 2.276057E+04 4.000000E-05
2 5.387679E+03 3.610000E-04
3 1.749945E+03 2.083000E-03
4 6.696653E+02 9.197000E-03
5 2.841948E+02 3.266000E-02
6 1.296077E+02 9.379500E-02
7 6.225415E+01 2.082740E-01
8 3.092964E+01 3.339930E-01
9 1.575827E+01 3.324930E-01
10 8.094211E+00 1.547280E-01
11 4.046921E+00 2.127100E-02
12 1.967869E+00 -1.690000E-03
13 9.252950E-01 -1.516000E-03
14 3.529920E-01 -2.420000E-04
15 1.273070E-01 2.300000E-05
16 4.435600E-02 -9.000000E-06
P 16
1 2.276057E+04 -1.500000E-05
2 5.387679E+03 -1.310000E-04
3 1.749945E+03 -7.550000E-04
4 6.696653E+02 -3.359000E-03
5 2.841948E+02 -1.208100E-02
6 1.296077E+02 -3.570300E-02
7 6.225415E+01 -8.250200E-02
8 3.092964E+01 -1.398900E-01
9 1.575827E+01 -1.407290E-01
10 8.094211E+00 3.876600E-02
11 4.046921E+00 3.426950E-01
12 1.967869E+00 4.523100E-01
13 9.252950E-01 2.770540E-01
14 3.529920E-01 4.388500E-02
15 1.273070E-01 -2.802000E-03
16 4.435600E-02 1.152000E-03
P 16
1 2.276057E+04 5.000000E-06
2 5.387679E+03 4.900000E-05
3 1.749945E+03 2.780000E-04
4 6.696653E+02 1.253000E-03
5 2.841948E+02 4.447000E-03
6 1.296077E+02 1.337000E-02
7 6.225415E+01 3.046900E-02
8 3.092964E+01 5.344700E-02
9 1.575827E+01 5.263900E-02
10 8.094211E+00 -1.688100E-02
11 4.046921E+00 -1.794480E-01
12 1.967869E+00 -2.095880E-01
13 9.252950E-01 -3.963300E-02
14 3.529920E-01 5.021300E-01
15 1.273070E-01 5.811110E-01
16 4.435600E-02 4.566600E-02
P 16
1 2.276057E+04 1.100000E-05
2 5.387679E+03 9.600000E-05
3 1.749945E+03 5.900000E-04
4 6.696653E+02 2.484000E-03
5 2.841948E+02 9.463000E-03
6 1.296077E+02 2.645300E-02
7 6.225415E+01 6.568900E-02
8 3.092964E+01 1.027320E-01
9 1.575827E+01 1.370410E-01
10 8.094211E+00 -7.096100E-02
11 4.046921E+00 -5.047080E-01
12 1.967869E+00 -4.780560E-01
13 9.252950E-01 9.428920E-01
14 3.529920E-01 5.446990E-01
15 1.273070E-01 -8.327660E-01
16 4.435600E-02 -1.084160E-01
P 16
1 2.276057E+04 3.000000E-06
2 5.387679E+03 2.500000E-05
3 1.749945E+03 1.470000E-04
4 6.696653E+02 6.560000E-04
5 2.841948E+02 2.351000E-03
6 1.296077E+02 7.004000E-03
7 6.225415E+01 1.613100E-02
8 3.092964E+01 2.777000E-02
9 1.575827E+01 2.756700E-02
10 8.094211E+00 -1.011500E-02
11 4.046921E+00 -8.100900E-02
12 1.967869E+00 -1.104090E-01
13 9.252950E-01 -7.173200E-02
14 3.529920E-01 1.879300E-01
15 1.273070E-01 5.646290E-01
16 4.435600E-02 4.070000E-01
P 1
1 4.435600E-02 1.000000E+00
P 1
1 0.0154500 1.0000000
D 8
1 1.738970E+02 2.700000E-03
2 5.188690E+01 2.090900E-02
3 1.934190E+01 8.440800E-02
4 7.975720E+00 2.139990E-01
5 3.398230E+00 3.359800E-01
6 1.409320E+00 3.573010E-01
7 5.488580E-01 2.645780E-01
8 1.901990E-01 1.039720E-01
D 8
1 1.738970E+02 -3.363000E-03
2 5.188690E+01 -2.607900E-02
3 1.934190E+01 -1.082310E-01
4 7.975720E+00 -2.822170E-01
5 3.398230E+00 -3.471900E-01
6 1.409320E+00 2.671100E-02
7 5.488580E-01 4.920470E-01
8 1.901990E-01 4.384220E-01
D 8
1 1.738970E+02 4.133000E-03
2 5.188690E+01 3.308500E-02
3 1.934190E+01 1.383360E-01
4 7.975720E+00 3.901660E-01
5 3.398230E+00 1.698420E-01
6 1.409320E+00 -6.830180E-01
7 5.488580E-01 -2.657970E-01
8 1.901990E-01 8.380630E-01
D 1
1 1.901990E-01 1.000000E+00
D 1
1 0.0659100 1.0000000
F 1
1 5.082100E+00 1.000000E+00
F 1
1 1.279700E+00 1.000000E+00
F 1
1 0.4617200 1.0000000
G 1
1 3.483500E+00 1.0000000
G 1
1 1.4597900 1.0000000
$END

@ -1 +1 @@
Subproject commit 242151e03d1d6bf042387226431d82d35845686a Subproject commit 90ee61f5041c7c94a0c605625a264860292813a0

View File

@ -515,4 +515,3 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
END_PROVIDER END_PROVIDER
! --- ! ---

View File

@ -106,3 +106,26 @@ interface: ezfio,provider,ocaml
default: 1.e-15 default: 1.e-15
ezfio_name: threshold_ao ezfio_name: threshold_ao
[n_pts_charge]
type: integer
doc: Number of point charges to be added to the potential
interface: ezfio
default: 0
[pts_charge_z]
type: double precision
doc: Charge associated to each point charge
interface: ezfio
size: (ao_one_e_ints.n_pts_charge)
[pts_charge_coord]
type: double precision
doc: Coordinate of each point charge.
interface: ezfio
size: (ao_one_e_ints.n_pts_charge,3)
[point_charges]
type: logical
doc: If |true|, point charges (see ao_one_e_ints/write_pt_charges.py) are added to the one-electron potential
interface: ezfio,provider,ocaml
default: False

View File

@ -0,0 +1,272 @@
! ---
BEGIN_PROVIDER [ integer, n_pts_charge ]
implicit none
BEGIN_DOC
! Number of point charges to be added to the potential
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_ao_one_e_ints_n_pts_charge(has)
if (has) then
write(6,'(A)') '.. >>>>> [ IO READ: n_pts_charge ] <<<<< ..'
call ezfio_get_ao_one_e_ints_n_pts_charge(n_pts_charge)
else
print *, 'ao_one_e_ints/n_pts_charge not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( n_pts_charge, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read n_pts_charge with MPI'
endif
IRP_ENDIF
call write_time(6)
END_PROVIDER
BEGIN_PROVIDER [ double precision, pts_charge_z, (n_pts_charge) ]
BEGIN_DOC
! Charge associated to each point charge.
END_DOC
implicit none
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_ao_one_e_ints_pts_charge_z(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(pts_charge_z, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_z with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: pts_charge_z ] <<<<< ..'
call ezfio_get_ao_one_e_ints_pts_charge_z(pts_charge_z)
IRP_IF MPI
call MPI_BCAST(pts_charge_z, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_z with MPI'
endif
IRP_ENDIF
endif
else
integer :: i
do i = 1, n_pts_charge
pts_charge_z(i) = 0.d0
enddo
endif
print*,'Point charges '
do i = 1, n_pts_charge
print*,'i,pts_charge_z(i)',i,pts_charge_z(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, pts_charge_coord, (n_pts_charge,3) ]
BEGIN_DOC
! Coordinates of each point charge.
END_DOC
implicit none
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_ao_one_e_ints_pts_charge_coord(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(pts_charge_coord, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_coord with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
double precision, allocatable :: buffer(:,:)
allocate (buffer(n_pts_charge,3))
write(6,'(A)') '.. >>>>> [ IO READ: pts_charge_coord ] <<<<< ..'
call ezfio_get_ao_one_e_ints_pts_charge_coord(buffer)
integer :: i,j
do i=1,3
do j=1,n_pts_charge
pts_charge_coord(j,i) = buffer(j,i)
enddo
enddo
deallocate(buffer)
IRP_IF MPI
call MPI_BCAST(pts_charge_coord, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_coord with MPI'
endif
IRP_ENDIF
endif
else
do i = 1, n_pts_charge
pts_charge_coord(i,:) = 0.d0
enddo
endif
print*,'Coordinates for the point charges '
do i = 1, n_pts_charge
write(*,'(I3,X,3(F16.8,X))'),i,pts_charge_coord(i,1:3)
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, ao_integrals_pt_chrg, (ao_num,ao_num)]
BEGIN_DOC
! Point charge-electron interaction, in the |AO| basis set.
!
! :math:`\langle \chi_i | -\sum_A \frac{1}{|r-R_A|} | \chi_j \rangle`
!
! These integrals also contain the pseudopotential integrals.
END_DOC
implicit none
integer :: num_A, num_B, power_A(3), power_B(3)
integer :: i, j, k, l, n_pt_in, m
double precision :: alpha, beta
double precision :: A_center(3),B_center(3),C_center(3)
double precision :: overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
ao_integrals_pt_chrg = 0.d0
! if (read_ao_integrals_pt_chrg) then
!
! call ezfio_get_ao_one_e_ints_ao_integrals_pt_chrg(ao_integrals_pt_chrg)
! print *, 'AO N-e integrals read from disk'
!
! else
! if(use_cosgtos) then
! !print *, " use_cosgtos for ao_integrals_pt_chrg ?", use_cosgtos
!
! do j = 1, ao_num
! do i = 1, ao_num
! ao_integrals_pt_chrg(i,j) = ao_integrals_pt_chrg_cosgtos(i,j)
! enddo
! enddo
!
! else
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B,&
!$OMP num_A,num_B,Z,c,c1,n_pt_in) &
!$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,pts_charge_coord,ao_coef_normalized_ordered_transp,nucl_coord,&
!$OMP n_pt_max_integrals,ao_integrals_pt_chrg,n_pts_charge,pts_charge_z)
n_pt_in = n_pt_max_integrals
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
power_A(1:3)= ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3)= ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
double precision :: c, c1
c = 0.d0
do k = 1, n_pts_charge
double precision :: Z
Z = pts_charge_z(k)
C_center(1:3) = pts_charge_coord(k,1:3)
c1 = NAI_pol_mult( A_center, B_center, power_A, power_B &
, alpha, beta, C_center, n_pt_in )
c = c + Z * c1
enddo
ao_integrals_pt_chrg(i,j) = ao_integrals_pt_chrg(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! endif
! IF(do_pseudo) THEN
! ao_integrals_pt_chrg += ao_pseudo_integrals
! ENDIF
! endif
! if (write_ao_integrals_pt_chrg) then
! call ezfio_set_ao_one_e_ints_ao_integrals_pt_chrg(ao_integrals_pt_chrg)
! print *, 'AO N-e integrals written to disk'
! endif
END_PROVIDER

View File

@ -104,6 +104,9 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
IF(do_pseudo) THEN IF(do_pseudo) THEN
ao_integrals_n_e += ao_pseudo_integrals ao_integrals_n_e += ao_pseudo_integrals
ENDIF ENDIF
IF(point_charges) THEN
ao_integrals_n_e += ao_integrals_pt_chrg
ENDIF
endif endif

View File

@ -0,0 +1,79 @@
#!/usr/bin/env python
import os
import sys
# First argument is the EZFIO file
# It reads a file EZFIO_point_charges.xyz written in this way:
# charge x y z (Angstrom)
# for all charges
def zip_in_ezfio(ezfio,tmp):
tmpzip=tmp+".gz"
cmdzip="gzip -c "+tmp+" > "+tmpzip
os.system(cmdzip)
os.system("rm "+tmp)
cmdmv="mv "+tmpzip+" "+EZFIO+"/ao_one_e_ints/"+tmpzip
os.system(cmdmv)
def mv_in_ezfio(ezfio,tmp):
cmdmv="mv "+tmp+" "+EZFIO+"/ao_one_e_ints/"+tmp
os.system(cmdmv)
# Getting the EZFIO
EZFIO=sys.argv[1]
EZFIO=EZFIO.replace("/", "")
print(EZFIO)
# Reading the point charges and convert the Angstrom geometry in Bohr for QP
f = open(EZFIO+'_point_charges.xyz','r')
lines = f.readlines()
convert_angs_to_bohr=1.8897259885789233
n_charges=0
coord_x=[]
coord_y=[]
coord_z=[]
charges=[]
for line in lines:
data = line.split()
if(len(data)>0):
n_charges += 1
charges.append(str(data[0]))
coord_x.append(str(convert_angs_to_bohr*float(data[1])))
coord_y.append(str(convert_angs_to_bohr*float(data[2])))
coord_z.append(str(convert_angs_to_bohr*float(data[3])))
# Write the file containing the number of charges and set in EZFIO folder
tmp="n_pts_charge"
fncharges = open(tmp,'w')
fncharges.write(" "+str(n_charges)+'\n')
fncharges.close()
mv_in_ezfio(EZFIO,tmp)
# Write the file containing the charges and set in EZFIO folder
tmp="pts_charge_z"
fcharges = open(tmp,'w')
fcharges.write(" 1\n")
fcharges.write(" "+str(n_charges)+'\n')
for i in range(n_charges):
fcharges.write(charges[i]+'\n')
fcharges.close()
zip_in_ezfio(EZFIO,tmp)
# Write the file containing the charge coordinates and set in EZFIO folder
tmp="pts_charge_coord"
fcoord = open(tmp,'w')
fcoord.write(" 2\n")
fcoord.write(" "+str(n_charges)+' 3\n')
#fcoord.write(" "+' 3 '+str(n_charges)+' \n')
for i in range(n_charges):
fcoord.write(' '+coord_x[i]+'\n')
for i in range(n_charges):
fcoord.write(' '+coord_y[i]+'\n')
for i in range(n_charges):
fcoord.write(' '+coord_z[i]+'\n')
fcoord.close()
zip_in_ezfio(EZFIO,tmp)

View File

@ -15,6 +15,7 @@ BEGIN_PROVIDER [double precision, TCSCF_bi_ort_dm_ao_alpha, (ao_num, ao_num) ]
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 & call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) & , mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
!, mo_r_coef, size(mo_r_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, TCSCF_bi_ort_dm_ao_alpha, size(TCSCF_bi_ort_dm_ao_alpha, 1) ) , 0.d0, TCSCF_bi_ort_dm_ao_alpha, size(TCSCF_bi_ort_dm_ao_alpha, 1) )
END_PROVIDER END_PROVIDER
@ -35,6 +36,7 @@ BEGIN_PROVIDER [ double precision, TCSCF_bi_ort_dm_ao_beta, (ao_num, ao_num) ]
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 & call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) & , mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
!, mo_r_coef, size(mo_r_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, TCSCF_bi_ort_dm_ao_beta, size(TCSCF_bi_ort_dm_ao_beta, 1) ) , 0.d0, TCSCF_bi_ort_dm_ao_beta, size(TCSCF_bi_ort_dm_ao_beta, 1) )
END_PROVIDER END_PROVIDER

View File

@ -96,7 +96,6 @@ subroutine filter_not_connected(key1,key2,Nint,sze,idx)
idx(0) = l-1 idx(0) = l-1
end end
subroutine filter_connected(key1,key2,Nint,sze,idx) subroutine filter_connected(key1,key2,Nint,sze,idx)
use bitmasks use bitmasks
implicit none implicit none

View File

@ -0,0 +1,164 @@
use bitmasks
subroutine filter_connected_array(key1,key2,ld,Nint,sze,idx)
use bitmasks
implicit none
BEGIN_DOC
! Filters out the determinants that are not connected by H
!
! returns the array idx which contains the index of the
!
! determinants in the array key1 that interact
!
! via the H operator with key2.
!
! idx(0) is the number of determinants that interact with key1
END_DOC
integer, intent(in) :: Nint, ld,sze
integer(bit_kind), intent(in) :: key1(Nint,2,ld)
integer(bit_kind), intent(in) :: key2(Nint,2)
integer, intent(out) :: idx(0:sze)
integer :: i,j,l
integer :: degree_x2
ASSERT (Nint > 0)
ASSERT (sze >= 0)
l=1
if (Nint==1) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1))) &
+ popcnt( xor( key1(1,2,i), key2(1,2)))
! print*,degree_x2
if (degree_x2 > 4) then
cycle
else
idx(l) = i
l = l+1
endif
enddo
else if (Nint==2) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,2,i), key2(2,2)))
if (degree_x2 > 4) then
cycle
else
idx(l) = i
l = l+1
endif
enddo
else if (Nint==3) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(2,2,i), key2(2,2))) + &
popcnt(xor( key1(3,1,i), key2(3,1))) + &
popcnt(xor( key1(3,2,i), key2(3,2)))
if (degree_x2 > 4) then
cycle
else
idx(l) = i
l = l+1
endif
enddo
else
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree_x2 = 0
!DIR$ LOOP COUNT MIN(4)
do j=1,Nint
degree_x2 = degree_x2+ popcnt(xor( key1(j,1,i), key2(j,1))) +&
popcnt(xor( key1(j,2,i), key2(j,2)))
if (degree_x2 > 4) then
exit
endif
enddo
if (degree_x2 <= 5) then
idx(l) = i
l = l+1
endif
enddo
endif
idx(0) = l-1
! print*,'idx(0) = ',idx(0)
end
BEGIN_PROVIDER [ integer, n_sparse_mat]
&BEGIN_PROVIDER [ integer, n_connected_per_det, (N_det)]
&BEGIN_PROVIDER [ integer, n_max_connected_per_det]
implicit none
BEGIN_DOC
! n_sparse_mat = total number of connections in the CI matrix
!
! n_connected_per_det(i) = number of connected determinants to the determinant psi_det(1,1,i)
!
! n_max_connected_per_det = maximum number of connected determinants
END_DOC
integer, allocatable :: idx(:)
allocate(idx(0:N_det))
integer :: i
n_sparse_mat = 0
do i = 1, N_det
call filter_connected_array(psi_det_sorted,psi_det_sorted(1,1,i),psi_det_size,N_int,N_det,idx)
n_connected_per_det(i) = idx(0)
n_sparse_mat += idx(0)
enddo
n_max_connected_per_det = maxval(n_connected_per_det)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), connected_det_per_det, (N_int,2,n_max_connected_per_det,N_det)]
&BEGIN_PROVIDER [ integer(bit_kind), list_connected_det_per_det, (n_max_connected_per_det,N_det)]
implicit none
BEGIN_DOC
! connected_det_per_det(:,:,j,i) = jth connected determinant to the determinant psi_det(:,:,i)
!
! list_connected_det_per_det(j,i) = index of jth determinant in psi_det which is connected to psi_det(:,:,i)
END_DOC
integer, allocatable :: idx(:)
allocate(idx(0:N_det))
integer :: i,j
do i = 1, N_det
call filter_connected_array(psi_det_sorted,psi_det_sorted(1,1,i),psi_det_size,N_int,N_det,idx)
do j = 1, idx(0)
connected_det_per_det(1:N_int,1:2,j,i) = psi_det_sorted(1:N_int,1:2,idx(j))
list_connected_det_per_det(j,i) = idx(j)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, sparse_h_mat, (n_max_connected_per_det, N_det)]
implicit none
BEGIN_DOC
! sparse matrix format
!
! sparse_h_mat(j,i) = matrix element between the jth connected determinant and psi_det(:,:,i)
END_DOC
integer :: i,j
double precision :: hij
do i = 1, N_det
do j = 1, n_connected_per_det(i)
call i_H_j(psi_det(1,1,i),connected_det_per_det(1,1,j,i),N_int,hij)
sparse_h_mat(j,i) = hij
enddo
enddo
END_PROVIDER

View File

@ -299,6 +299,7 @@ BEGIN_PROVIDER [ double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_
END_PROVIDER END_PROVIDER
! ---
! --- ! ---
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num, n_points_final_grid) ] BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num, n_points_final_grid) ]

View File

@ -340,6 +340,7 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num,
do i = 1, ao_num do i = 1, ao_num
do k = 1, ao_num do k = 1, ao_num
tc_grad_and_lapl_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) tc_grad_and_lapl_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
!tc_grad_and_lapl_ao(k,i,l,j) = ac_mat(k,i,l,j)
enddo enddo
enddo enddo
enddo enddo

View File

@ -0,0 +1,308 @@
! ---
subroutine Roothaan_Hall_SCF_MO()
BEGIN_DOC
!
! Roothaan-Hall algorithm for SCF Hartree-Fock calculation
!
END_DOC
implicit none
double precision :: energy_SCF, energy_SCF_previous, Delta_energy_SCF
double precision :: max_error_DIIS
double precision, allocatable :: Fock_matrix_DIIS(:,:,:), error_matrix_DIIS(:,:,:)
integer :: iteration_SCF, dim_DIIS, index_dim_DIIS
integer :: i, j
double precision :: level_shift_save
double precision, allocatable :: mo_coef_save(:,:)
logical, external :: qp_stop
PROVIDE ao_md5 mo_occ level_shift
allocate( mo_coef_save(ao_num,mo_num) &
, Fock_matrix_DIIS (mo_num,mo_num,max_dim_DIIS) &
, error_matrix_DIIS(mo_num,mo_num,max_dim_DIIS) )
Fock_matrix_DIIS = 0.d0
error_matrix_DIIS = 0.d0
mo_coef_save = 0.d0
call write_time(6)
print*,'energy of the guess = ',SCF_energy
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
' N ', 'energy ', 'energy diff ', 'DIIS error ', 'Level shift '
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
! Initialize energies and density matrices
energy_SCF_previous = SCF_energy
Delta_energy_SCF = 1.d0
iteration_SCF = 0
dim_DIIS = 0
max_error_DIIS = 1.d0
!
! Start of main SCF loop
!
PROVIDE Fock_matrix_mo error_diis_Fmo
do while ( &
( (max_error_DIIS > threshold_DIIS_nonzero) .or. &
(dabs(Delta_energy_SCF) > thresh_SCF) &
) .and. (iteration_SCF < n_it_SCF_max) )
iteration_SCF += 1
if(frozen_orb_scf) then
call initialize_mo_coef_begin_iteration
endif
dim_DIIS = min(dim_DIIS+1, max_dim_DIIS)
if( (scf_algorithm == 'DIIS_MO').and.(dabs(Delta_energy_SCF) > 1.d-6)) then
!if(scf_algorithm == 'DIIS_MO') then
index_dim_DIIS = mod(dim_DIIS-1, max_dim_DIIS) + 1
do j = 1, mo_num
do i = 1, mo_num
Fock_matrix_DIIS (i,j,index_dim_DIIS) = Fock_matrix_mo(i,j)
error_matrix_DIIS(i,j,index_dim_DIIS) = error_diis_Fmo(i,j)
enddo
enddo
call extrapolate_Fock_matrix_mo(error_matrix_DIIS, Fock_matrix_DIIS, Fock_matrix_mo, size(Fock_matrix_mo, 1), iteration_SCF, dim_DIIS)
do i = 1, mo_num
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
enddo
TOUCH Fock_matrix_mo fock_matrix_diag_mo
endif
mo_coef = eigenvectors_Fock_matrix_mo
if(frozen_orb_scf) then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH mo_coef
max_error_DIIS = maxval(Abs(error_diis_Fmo))
energy_SCF = SCF_energy
Delta_energy_SCF = energy_SCF - energy_SCF_previous
if( (SCF_algorithm == 'DIIS_MO') .and. (Delta_energy_SCF > 0.d0) ) then
Fock_matrix_MO(1:mo_num,1:mo_num) = Fock_matrix_DIIS(1:mo_num,1:mo_num,index_dim_DIIS)
do i = 1, mo_num
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
enddo
TOUCH Fock_matrix_mo fock_matrix_diag_mo
mo_coef = eigenvectors_Fock_matrix_mo
max_error_DIIS = maxval(Abs(error_diis_Fmo))
energy_SCF = SCF_energy
Delta_energy_SCF = energy_SCF - energy_SCF_previous
endif
level_shift_save = level_shift
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
do while(Delta_energy_SCF > 0.d0)
mo_coef(1:ao_num,1:mo_num) = mo_coef_save(1:ao_num,1:mo_num)
if(level_shift <= .1d0) then
level_shift = 1.d0
else
level_shift = level_shift * 3.0d0
endif
TOUCH mo_coef level_shift
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_mo(1:ao_num,1:mo_num)
if(frozen_orb_scf) then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH mo_coef
Delta_energy_SCF = SCF_energy - energy_SCF_previous
energy_SCF = SCF_energy
if(level_shift-level_shift_save > 40.d0) then
level_shift = level_shift_save * 4.d0
SOFT_TOUCH level_shift
exit
endif
dim_DIIS=0
enddo
level_shift = level_shift * 0.5d0
SOFT_TOUCH level_shift
energy_SCF_previous = energy_SCF
! Print results at the end of each iteration
write(6,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, I3)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS, level_shift, dim_DIIS
if(Delta_energy_SCF < 0.d0) then
call save_mos
endif
if(qp_stop()) exit
enddo
!
! End of Main SCF loop
!
if(iteration_SCF < n_it_SCF_max) then
mo_label = 'Canonical'
endif
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,*)
if(.not.frozen_orb_scf)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo, size(Fock_matrix_mo, 1), size(Fock_matrix_mo, 2), mo_label, 1, .true.)
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef, 1), 1.d-10)
call orthonormalize_mos
call save_mos
endif
call write_double(6, energy_SCF, 'SCF energy')
call write_time(6)
end
! ---
subroutine extrapolate_Fock_matrix_mo(error_matrix_DIIS, Fock_matrix_DIIS, Fock_matrix_MO_, size_Fock_matrix_MO, iteration_SCF, dim_DIIS)
BEGIN_DOC
! Compute the extrapolated Fock matrix using the DIIS procedure
END_DOC
implicit none
integer,intent(inout) :: dim_DIIS
double precision,intent(in) :: Fock_matrix_DIIS(mo_num,mo_num,dim_DIIS), error_matrix_DIIS(mo_num,mo_num,dim_DIIS)
integer,intent(in) :: iteration_SCF, size_Fock_matrix_MO
double precision,intent(inout):: Fock_matrix_MO_(size_Fock_matrix_MO,mo_num)
double precision,allocatable :: B_matrix_DIIS(:,:),X_vector_DIIS(:)
double precision,allocatable :: C_vector_DIIS(:)
double precision,allocatable :: scratch(:,:)
integer :: i,j,k,l,i_DIIS,j_DIIS
double precision :: rcond, ferr, berr
integer, allocatable :: iwork(:)
integer :: lwork
if(dim_DIIS < 1) then
return
endif
allocate( &
B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1), &
X_vector_DIIS(dim_DIIS+1), &
C_vector_DIIS(dim_DIIS+1), &
scratch(mo_num,mo_num) &
)
! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j = 1, dim_DIIS
j_DIIS = min(dim_DIIS, mod(iteration_SCF-j, max_dim_DIIS) + 1)
do i = 1, dim_DIIS
i_DIIS = min(dim_DIIS, mod(iteration_SCF-i, max_dim_DIIS) + 1)
! Compute product of two errors vectors
do l = 1, mo_num
do k = 1, mo_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + error_matrix_DIIS(k,l,i_DIIS) * error_matrix_DIIS(k,l,j_DIIS)
enddo
enddo
enddo
enddo
! Pad B matrix and build the X matrix
C_vector_DIIS(:) = 0.d0
do i = 1, dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
enddo
C_vector_DIIS(dim_DIIS+1) = -1.d0
deallocate(scratch)
! Estimate condition number of B
double precision :: anorm
integer :: info
integer,allocatable :: ipiv(:)
double precision, allocatable :: AF(:,:)
double precision, external :: dlange
lwork = max((dim_DIIS+1)**2, (dim_DIIS+1)*5)
allocate(AF(dim_DIIS+1,dim_DIIS+1))
allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) )
allocate(scratch(lwork,1))
scratch(:,1) = 0.d0
anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, size(B_matrix_DIIS, 1), scratch(1,1))
AF(:,:) = B_matrix_DIIS(:,:)
call dgetrf(dim_DIIS+1, dim_DIIS+1, AF, size(AF, 1), ipiv, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
call dgecon( '1', dim_DIIS+1, AF, size(AF, 1), anorm, rcond, scratch, iwork, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
if(rcond < 1.d-14) then
dim_DIIS = 0
return
endif
! solve the linear system C = B.X
X_vector_DIIS = C_vector_DIIS
call dgesv(dim_DIIS+1 , 1, B_matrix_DIIS, size(B_matrix_DIIS, 1), ipiv, X_vector_DIIS, size(X_vector_DIIS, 1), info)
deallocate(scratch, AF, iwork)
if(info < 0) then
stop 'bug in DIIS_MO'
endif
! Compute extrapolated Fock matrix
!$OMP PARALLEL DO PRIVATE(i,j,k) DEFAULT(SHARED) if (mo_num > 200)
do j = 1, mo_num
do i = 1, mo_num
Fock_matrix_MO_(i,j) = 0.d0
enddo
do k = 1, dim_DIIS
if(dabs(X_vector_DIIS(k)) < 1.d-10) cycle
do i = 1, mo_num
! FPE here
Fock_matrix_MO_(i,j) = Fock_matrix_MO_(i,j) + X_vector_DIIS(k) * Fock_matrix_DIIS(i,j,dim_DIIS-k+1)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end

View File

@ -0,0 +1,196 @@
subroutine Roothaan_Hall_SCF_MODIF
BEGIN_DOC
! Roothaan-Hall algorithm for SCF Hartree-Fock calculation
END_DOC
implicit none
double precision :: energy_SCF,energy_SCF_previous,Delta_energy_SCF
double precision :: max_error_DIIS,max_error_DIIS_alpha,max_error_DIIS_beta
double precision, allocatable :: Fock_matrix_DIIS(:,:,:),error_matrix_DIIS(:,:,:)
integer :: iteration_SCF,dim_DIIS,index_dim_DIIS
integer :: i,j
logical, external :: qp_stop
double precision, allocatable :: mo_coef_save(:,:)
PROVIDE ao_md5 mo_occ level_shift
allocate(mo_coef_save(ao_num,mo_num), &
Fock_matrix_DIIS (ao_num,ao_num,max_dim_DIIS), &
error_matrix_DIIS(ao_num,ao_num,max_dim_DIIS) &
)
Fock_matrix_DIIS = 0.d0
error_matrix_DIIS = 0.d0
mo_coef_save = 0.d0
call write_time(6)
print*,'energy of the guess = ',SCF_energy
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
' N ', 'energy ', 'energy diff ', 'DIIS error ', 'Level shift '
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
! Initialize energies and density matrices
energy_SCF_previous = SCF_energy
Delta_energy_SCF = 1.d0
iteration_SCF = 0
dim_DIIS = 0
max_error_DIIS = 1.d0
!
! Start of main SCF loop
!
PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO
do while ( &
( (max_error_DIIS > threshold_DIIS_nonzero) .or. &
(dabs(Delta_energy_SCF) > thresh_SCF) &
) .and. (iteration_SCF < n_it_SCF_max) )
! Increment cycle number
iteration_SCF += 1
if(frozen_orb_scf)then
call initialize_mo_coef_begin_iteration
endif
! Current size of the DIIS space
dim_DIIS = min(dim_DIIS+1,max_dim_DIIS)
if( (scf_algorithm == 'DIIS_MODIF') .and. (dabs(Delta_energy_SCF) > 1.d-6) ) then
!if(scf_algorithm == 'DIIS_MODIF') then
! Store Fock and error matrices at each iteration
index_dim_DIIS = mod(dim_DIIS-1,max_dim_DIIS)+1
do j=1,ao_num
do i=1,ao_num
Fock_matrix_DIIS (i,j,index_dim_DIIS) = Fock_matrix_AO(i,j)
error_matrix_DIIS(i,j,index_dim_DIIS) = FPS_SPF_matrix_AO(i,j)
enddo
enddo
! Compute the extrapolated Fock matrix
call extrapolate_Fock_matrix( &
error_matrix_DIIS,Fock_matrix_DIIS, &
Fock_matrix_AO,size(Fock_matrix_AO,1), &
iteration_SCF,dim_DIIS &
)
call ao_to_mo(Fock_matrix_AO, size(Fock_matrix_AO, 1), Fock_matrix_MO, size(Fock_matrix_MO, 1))
do i = 1, mo_num
Fock_matrix_diag_MO(i) = Fock_matrix_MO(i,i)
enddo
TOUCH Fock_matrix_MO Fock_matrix_diag_MO
!Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
!Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
!TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif
MO_coef = eigenvectors_Fock_matrix_MO
if(frozen_orb_scf)then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH MO_coef
! Calculate error vectors
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO))
! SCF energy
energy_SCF = SCF_energy
Delta_energy_SCF = energy_SCF - energy_SCF_previous
if( (SCF_algorithm == 'DIIS_MODIF') .and. (Delta_energy_SCF > 0.d0) ) then
Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS(1:ao_num,1:ao_num,index_dim_DIIS)
call ao_to_mo(Fock_matrix_AO, size(Fock_matrix_AO, 1), Fock_matrix_MO, size(Fock_matrix_MO, 1))
do i = 1, mo_num
Fock_matrix_diag_MO(i) = Fock_matrix_MO(i,i)
enddo
TOUCH Fock_matrix_MO Fock_matrix_diag_MO
!Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
!Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
!TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif
double precision :: level_shift_save
level_shift_save = level_shift
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
do while (Delta_energy_SCF > 0.d0)
mo_coef(1:ao_num,1:mo_num) = mo_coef_save
if (level_shift <= .1d0) then
level_shift = 1.d0
else
level_shift = level_shift * 3.0d0
endif
TOUCH mo_coef level_shift
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
if(frozen_orb_scf)then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH mo_coef
Delta_energy_SCF = SCF_energy - energy_SCF_previous
energy_SCF = SCF_energy
if (level_shift-level_shift_save > 40.d0) then
level_shift = level_shift_save * 4.d0
SOFT_TOUCH level_shift
exit
endif
dim_DIIS=0
enddo
level_shift = level_shift * 0.5d0
SOFT_TOUCH level_shift
energy_SCF_previous = energy_SCF
! Print results at the end of each iteration
write(6,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, I3)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS, level_shift, dim_DIIS
if (Delta_energy_SCF < 0.d0) then
call save_mos
endif
if (qp_stop()) exit
enddo
if (iteration_SCF < n_it_SCF_max) then
mo_label = 'Canonical'
endif
!
! End of Main SCF loop
!
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,*)
if(.not.frozen_orb_scf)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), &
size(Fock_matrix_mo,2),mo_label,1,.true.)
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
call orthonormalize_mos
call save_mos
endif
call write_double(6, energy_SCF, 'SCF energy')
call write_time(6)
end

View File

@ -136,36 +136,12 @@ doc: nb of Gaussians used to fit Jastrow fcts
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 20 default: 20
[max_dim_diis_tcscf]
type: integer
doc: Maximum size of the DIIS extrapolation procedure
interface: ezfio,provider,ocaml
default: 15
[threshold_diis_tcscf]
type: Threshold
doc: Threshold on the convergence of the DIIS error vector during a TCSCF calculation. If 0. is chosen, the square root of thresh_tcscf will be used.
interface: ezfio,provider,ocaml
default: 0.
[level_shift_tcscf]
type: Positive_float
doc: Energy shift on the virtual MOs to improve TCSCF convergence
interface: ezfio,provider,ocaml
default: 0.
[tcscf_algorithm] [tcscf_algorithm]
type: character*(32) type: character*(32)
doc: Type of TCSCF algorithm used. Possible choices are [Simple | DIIS] doc: Type of TCSCF algorithm used. Possible choices are [Simple | DIIS]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: Simple default: Simple
[im_thresh_tcscf]
type: Threshold
doc: Thresholds on the Imag part of energy
interface: ezfio,provider,ocaml
default: 1.e-7
[test_cycle_tc] [test_cycle_tc]
type: logical type: logical
doc: If |true|, the integrals of the three-body jastrow are computed with cycles doc: If |true|, the integrals of the three-body jastrow are computed with cycles
@ -184,3 +160,27 @@ doc: Threshold to determine if non-diagonal elements of L.T x R are close enouph
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 1.e-6 default: 1.e-6
[max_dim_diis_tcscf]
type: integer
doc: Maximum size of the DIIS extrapolation procedure
interface: ezfio,provider,ocaml
default: 15
[threshold_diis_tcscf]
type: Threshold
doc: Threshold on the convergence of the DIIS error vector during a TCSCF calculation. If 0. is chosen, the square root of thresh_tcscf will be used.
interface: ezfio,provider,ocaml
default: 0.
[level_shift_tcscf]
type: Positive_float
doc: Energy shift on the virtual MOs to improve TCSCF convergence
interface: ezfio,provider,ocaml
default: 0.
[im_thresh_tcscf]
type: Threshold
doc: Thresholds on the Imag part of energy
interface: ezfio,provider,ocaml
default: 1.e-7

View File

@ -41,6 +41,15 @@
!! rho_b(l,j) * < l k| T | i j> !! rho_b(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i) !two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_alpha(k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_beta (k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho_a(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
!! rho_b(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
! rho(l,j) * < k l| T | i j> ! rho(l,j) * < k l| T | i j>
two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(k,i,l,j) two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(k,i,l,j)
! rho(l,j) * < k l| T | i j> ! rho(l,j) * < k l| T | i j>

336
src/tc_scf/rh_tcscf.irp.f Normal file
View File

@ -0,0 +1,336 @@
! ---
subroutine rh_tcscf()
BEGIN_DOC
!
! Roothaan-Hall algorithm for TC-SCF calculation
!
END_DOC
implicit none
integer :: i, j
integer :: iteration_TCSCF, dim_DIIS, index_dim_DIIS
double precision :: energy_TCSCF, energy_TCSCF_1e, energy_TCSCF_2e, energy_TCSCF_3e, gradie_TCSCF
double precision :: energy_TCSCF_previous, delta_energy_TCSCF
double precision :: gradie_TCSCF_previous, delta_gradie_TCSCF
double precision :: max_error_DIIS_TCSCF
double precision :: level_shift_save
double precision :: delta_energy_tmp, delta_gradie_tmp
double precision, allocatable :: F_DIIS(:,:,:), e_DIIS(:,:,:)
double precision, allocatable :: mo_r_coef_save(:,:), mo_l_coef_save(:,:)
logical, external :: qp_stop
!PROVIDE ao_md5 mo_occ
PROVIDE level_shift_TCSCF
allocate( mo_r_coef_save(ao_num,mo_num), mo_l_coef_save(ao_num,mo_num) &
, F_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF), e_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF) )
F_DIIS = 0.d0
e_DIIS = 0.d0
mo_l_coef_save = 0.d0
mo_r_coef_save = 0.d0
call write_time(6)
! ---
! Initialize energies and density matrices
energy_TCSCF_previous = TC_HF_energy
energy_TCSCF_1e = TC_HF_one_e_energy
energy_TCSCF_2e = TC_HF_two_e_energy
energy_TCSCF_3e = 0.d0
if(three_body_h_tc) then
energy_TCSCF_3e = diag_three_elem_hf
endif
gradie_TCSCF_previous = grad_non_hermit
delta_energy_TCSCF = 1.d0
delta_gradie_TCSCF = 1.d0
iteration_TCSCF = 0
dim_DIIS = 0
max_error_DIIS_TCSCF = 1.d0
! ---
! Start of main SCF loop
PROVIDE FQS_SQF_ao Fock_matrix_tc_ao_tot
do while( (max_error_DIIS_TCSCF > threshold_DIIS_nonzero_TCSCF) .or. &
!(dabs(delta_energy_TCSCF) > thresh_TCSCF) .or. &
(dabs(gradie_TCSCF_previous) > dsqrt(thresh_TCSCF)) )
iteration_TCSCF += 1
if(iteration_TCSCF > n_it_TCSCF_max) then
print *, ' max of TCSCF iterations is reached ', n_it_TCSCF_max
stop
endif
dim_DIIS = min(dim_DIIS+1, max_dim_DIIS_TCSCF)
! ---
if((tcscf_algorithm == 'DIIS') .and. (dabs(delta_energy_TCSCF) > 1.d-6)) then
! store Fock and error matrices at each iteration
index_dim_DIIS = mod(dim_DIIS-1, max_dim_DIIS_TCSCF) + 1
do j = 1, ao_num
do i = 1, ao_num
F_DIIS(i,j,index_dim_DIIS) = Fock_matrix_tc_ao_tot(i,j)
e_DIIS(i,j,index_dim_DIIS) = FQS_SQF_ao(i,j)
enddo
enddo
call extrapolate_TC_Fock_matrix(e_DIIS, F_DIIS, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1), iteration_TCSCF, dim_DIIS)
Fock_matrix_tc_ao_alpha = 0.5d0 * Fock_matrix_tc_ao_tot
Fock_matrix_tc_ao_beta = 0.5d0 * Fock_matrix_tc_ao_tot
!TOUCH Fock_matrix_tc_ao_alpha Fock_matrix_tc_ao_beta
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) &
, Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) )
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta , size(Fock_matrix_tc_ao_beta , 1) &
, Fock_matrix_tc_mo_beta , size(Fock_matrix_tc_mo_beta , 1) )
TOUCH Fock_matrix_tc_mo_alpha Fock_matrix_tc_mo_beta
endif
! ---
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
TOUCH mo_l_coef mo_r_coef
! ---
! calculate error vectors
max_error_DIIS_TCSCF = maxval(abs(FQS_SQF_mo))
! ---
delta_energy_tmp = TC_HF_energy - energy_TCSCF_previous
delta_gradie_tmp = grad_non_hermit - gradie_TCSCF_previous
! ---
do while((delta_gradie_tmp > 1.d-7) .and. (iteration_TCSCF > 1))
!do while((dabs(delta_energy_tmp) > 0.5d0) .and. (iteration_TCSCF > 1))
print *, ' very big or bad step : ', delta_energy_tmp, delta_gradie_tmp
print *, ' TC level shift = ', level_shift_TCSCF
mo_l_coef(1:ao_num,1:mo_num) = mo_l_coef_save(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = mo_r_coef_save(1:ao_num,1:mo_num)
if(level_shift_TCSCF <= .1d0) then
level_shift_TCSCF = 1.d0
else
level_shift_TCSCF = level_shift_TCSCF * 3.0d0
endif
TOUCH mo_l_coef mo_r_coef level_shift_TCSCF
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
TOUCH mo_l_coef mo_r_coef
delta_energy_tmp = TC_HF_energy - energy_TCSCF_previous
delta_gradie_tmp = grad_non_hermit - gradie_TCSCF_previous
if(level_shift_TCSCF - level_shift_save > 40.d0) then
level_shift_TCSCF = level_shift_save * 4.d0
SOFT_TOUCH level_shift_TCSCF
exit
endif
dim_DIIS = 0
enddo
! print *, ' very big step : ', delta_energy_tmp
! print *, ' TC level shift = ', level_shift_TCSCF
! ---
level_shift_TCSCF = 0.d0
!level_shift_TCSCF = level_shift_TCSCF * 0.5d0
SOFT_TOUCH level_shift_TCSCF
gradie_TCSCF = grad_non_hermit
energy_TCSCF = TC_HF_energy
energy_TCSCF_1e = TC_HF_one_e_energy
energy_TCSCF_2e = TC_HF_two_e_energy
energy_TCSCF_3e = 0.d0
if(three_body_h_tc) then
energy_TCSCF_3e = diag_three_elem_hf
endif
delta_energy_TCSCF = energy_TCSCF - energy_TCSCF_previous
delta_gradie_TCSCF = gradie_TCSCF - gradie_TCSCF_previous
energy_TCSCF_previous = energy_TCSCF
gradie_TCSCF_previous = gradie_TCSCF
level_shift_save = level_shift_TCSCF
mo_l_coef_save(1:ao_num,1:mo_num) = mo_l_coef(1:ao_num,1:mo_num)
mo_r_coef_save(1:ao_num,1:mo_num) = mo_r_coef(1:ao_num,1:mo_num)
print *, ' iteration = ', iteration_TCSCF
print *, ' total TC energy = ', energy_TCSCF
print *, ' 1-e TC energy = ', energy_TCSCF_1e
print *, ' 2-e TC energy = ', energy_TCSCF_2e
print *, ' 3-e TC energy = ', energy_TCSCF_3e
print *, ' |delta TC energy| = ', dabs(delta_energy_TCSCF)
print *, ' TC gradient = ', gradie_TCSCF
print *, ' delta TC gradient = ', delta_gradie_TCSCF
print *, ' max TC DIIS error = ', max_error_DIIS_TCSCF
print *, ' TC DIIS dim = ', dim_DIIS
print *, ' TC level shift = ', level_shift_TCSCF
print *, ' '
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
if(qp_stop()) exit
enddo
! ---
print *, ' TCSCF DIIS converged !'
call print_energy_and_mos()
call write_time(6)
deallocate(mo_r_coef_save, mo_l_coef_save, F_DIIS, e_DIIS)
end
! ---
subroutine extrapolate_TC_Fock_matrix(e_DIIS, F_DIIS, F_ao, size_F_ao, iteration_TCSCF, dim_DIIS)
BEGIN_DOC
!
! Compute the extrapolated Fock matrix using the DIIS procedure
!
! e = \sum_i c_i e_i and \sum_i c_i = 1
! ==> lagrange multiplier with L = |e|^2 - \lambda (\sum_i c_i = 1)
!
END_DOC
implicit none
integer, intent(in) :: iteration_TCSCF, size_F_ao
integer, intent(inout) :: dim_DIIS
double precision, intent(in) :: F_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(in) :: e_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(inout) :: F_ao(size_F_ao,ao_num)
double precision, allocatable :: B_matrix_DIIS(:,:), X_vector_DIIS(:), C_vector_DIIS(:)
integer :: i, j, k, l, i_DIIS, j_DIIS
integer :: lwork
double precision :: rcond, ferr, berr
integer, allocatable :: iwork(:)
double precision, allocatable :: scratch(:,:)
if(dim_DIIS < 1) then
return
endif
allocate( B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1), X_vector_DIIS(dim_DIIS+1) &
, C_vector_DIIS(dim_DIIS+1), scratch(ao_num,ao_num) )
! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j = 1, dim_DIIS
j_DIIS = min(dim_DIIS, mod(iteration_TCSCF-j, max_dim_DIIS_TCSCF)+1)
do i = 1, dim_DIIS
i_DIIS = min(dim_DIIS, mod(iteration_TCSCF-i, max_dim_DIIS_TCSCF)+1)
! Compute product of two errors vectors
do l = 1, ao_num
do k = 1, ao_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + e_DIIS(k,l,i_DIIS) * e_DIIS(k,l,j_DIIS)
enddo
enddo
enddo
enddo
! Pad B matrix and build the X matrix
C_vector_DIIS(:) = 0.d0
do i = 1, dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
enddo
C_vector_DIIS(dim_DIIS+1) = -1.d0
deallocate(scratch)
! Estimate condition number of B
integer :: info
double precision :: anorm
integer, allocatable :: ipiv(:)
double precision, allocatable :: AF(:,:)
double precision, external :: dlange
lwork = max((dim_DIIS+1)**2, (dim_DIIS+1)*5)
allocate(AF(dim_DIIS+1,dim_DIIS+1))
allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) )
allocate(scratch(lwork,1))
scratch(:,1) = 0.d0
anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, size(B_matrix_DIIS, 1), scratch(1,1))
AF(:,:) = B_matrix_DIIS(:,:)
call dgetrf(dim_DIIS+1, dim_DIIS+1, AF, size(AF, 1), ipiv, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
call dgecon('1', dim_DIIS+1, AF, size(AF, 1), anorm, rcond, scratch, iwork, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
if(rcond < 1.d-14) then
dim_DIIS = 0
return
endif
! solve the linear system C = B x X
X_vector_DIIS = C_vector_DIIS
call dgesv(dim_DIIS+1, 1, B_matrix_DIIS, size(B_matrix_DIIS, 1), ipiv , X_vector_DIIS, size(X_vector_DIIS, 1), info)
deallocate(scratch, AF, iwork)
if(info < 0) then
stop ' bug in TC-DIIS'
endif
! Compute extrapolated Fock matrix
!$OMP PARALLEL DO PRIVATE(i,j,k) DEFAULT(SHARED) if (ao_num > 200)
do j = 1, ao_num
do i = 1, ao_num
F_ao(i,j) = 0.d0
enddo
do k = 1, dim_DIIS
if(dabs(X_vector_DIIS(k)) < 1.d-10) cycle
do i = 1,ao_num
! FPE here
F_ao(i,j) = F_ao(i,j) + X_vector_DIIS(k) * F_DIIS(i,j,dim_DIIS-k+1)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---

View File

@ -73,4 +73,3 @@ subroutine create_guess()
end subroutine create_guess end subroutine create_guess
! --- ! ---

View File

@ -10,7 +10,6 @@ BEGIN_PROVIDER [ double precision, TCSCF_density_matrix_ao_beta, (ao_num, ao_num
else else
TCSCF_density_matrix_ao_beta = SCF_density_matrix_ao_beta TCSCF_density_matrix_ao_beta = SCF_density_matrix_ao_beta
endif endif
END_PROVIDER END_PROVIDER
! --- ! ---
@ -25,7 +24,6 @@ BEGIN_PROVIDER [ double precision, TCSCF_density_matrix_ao_alpha, (ao_num, ao_nu
else else
TCSCF_density_matrix_ao_alpha = SCF_density_matrix_ao_alpha TCSCF_density_matrix_ao_alpha = SCF_density_matrix_ao_alpha
endif endif
END_PROVIDER END_PROVIDER

View File

@ -62,12 +62,6 @@ subroutine test_tc_scf
integer :: i integer :: i
! provide int2_u_grad1u_x_j1b2_test ! provide int2_u_grad1u_x_j1b2_test
provide x_v_ij_erf_rk_cst_mu_j1b_test provide x_v_ij_erf_rk_cst_mu_j1b_test
! do i = 1, ng_fit_jast
! print*,expo_gauss_1_erf_x_2(i),coef_gauss_1_erf_x_2(i)
! enddo
! provide tc_grad_square_ao_test
! provide tc_grad_and_lapl_ao_test
! provide int2_u_grad1u_x_j1b2_test
! provide x_v_ij_erf_rk_cst_mu_j1b_test ! provide x_v_ij_erf_rk_cst_mu_j1b_test
! print*,'TC_HF_energy = ',TC_HF_energy ! print*,'TC_HF_energy = ',TC_HF_energy
! print*,'grad_non_hermit = ',grad_non_hermit ! print*,'grad_non_hermit = ',grad_non_hermit
@ -1006,3 +1000,4 @@ end
! --- ! ---
>>>>>>> 92a4e33f8a21717cab0c0e4f8412ed6903afb04a

View File

@ -0,0 +1,90 @@
program print_h_mat
implicit none
BEGIN_DOC
! program that prints out the CI matrix in sparse form
END_DOC
read_wf = .True.
touch read_wf
call print_wf_dets
call print_wf_coef
call sparse_mat
call full_mat
call test_sparse_mat
end
subroutine print_wf_dets
implicit none
integer :: i,j
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.wf_det'
i_unit_output = getUnitAndOpen(output,'w')
write(i_unit_output,*)N_det,N_int
do i = 1, N_det
write(i_unit_output,*)psi_det_sorted(1:N_int,1,i)
write(i_unit_output,*)psi_det_sorted(1:N_int,2,i)
enddo
end
subroutine print_wf_coef
implicit none
integer :: i,j
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.wf_coef'
i_unit_output = getUnitAndOpen(output,'w')
write(i_unit_output,*)N_det,N_states
do i = 1, N_det
write(i_unit_output,*)psi_coef_sorted(i,1:N_states)
enddo
end
subroutine sparse_mat
implicit none
integer :: i,j
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.hmat_sparse'
i_unit_output = getUnitAndOpen(output,'w')
do i = 1, N_det
write(i_unit_output,*)i,n_connected_per_det(i)
do j =1, n_connected_per_det(i)
write(i_unit_output,*)list_connected_det_per_det(j,i),sparse_h_mat(j,i)
enddo
enddo
end
subroutine full_mat
implicit none
integer :: i,j
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.hmat_full'
i_unit_output = getUnitAndOpen(output,'w')
do i = 1, N_det
do j = i, N_det
write(i_unit_output,*)i,j,H_matrix_all_dets(j,i)
enddo
enddo
end
subroutine test_sparse_mat
implicit none
integer :: i,j
double precision, allocatable :: eigvec(:,:), eigval(:), hmat(:,:)
allocate(eigval(N_det), eigvec(N_det,N_det),hmat(N_det,N_det))
hmat = 0.d0
do i = 1, N_det
do j =1, n_connected_per_det(i)
hmat(list_connected_det_per_det(j,i),i) = sparse_h_mat(j,i)
enddo
enddo
call lapack_diag(eigval,eigvec,hmat,N_det,N_det)
print*,'The two energies should be the same '
print*,'eigval(1) = ',eigval(1)
print*,'psi_energy= ',CI_electronic_energy(1)
end

View File

@ -48,7 +48,7 @@ end
! TODO remove dim ! TODO remove dim
subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim) subroutine give_explicit_poly_and_gaussian(P_new, P_center, p, fact_k, iorder, alpha, beta, a, b, A_center, B_center, dim)
BEGIN_DOC BEGIN_DOC
! Transforms the product of ! Transforms the product of
@ -65,19 +65,19 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
implicit none implicit none
include 'constants.include.F' include 'constants.include.F'
integer, intent(in) :: dim integer, intent(in) :: dim
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1) integer, intent(in) :: a(3), b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
double precision, intent(in) :: alpha, beta ! exponents double precision, intent(in) :: alpha, beta ! exponents
double precision, intent(in) :: A_center(3) ! A center double precision, intent(in) :: A_center(3) ! A center
double precision, intent(in) :: B_center (3) ! B center double precision, intent(in) :: B_center (3) ! B center
double precision, intent(out) :: P_center(3) ! new center integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
double precision, intent(out) :: p ! new exponent double precision, intent(out) :: P_center(3) ! new center
double precision, intent(out) :: fact_k ! constant factor double precision, intent(out) :: p ! new exponent
double precision, intent(out) :: P_new(0:max_dim,3)! polynomial double precision, intent(out) :: fact_k ! constant factor
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials double precision, intent(out) :: P_new(0:max_dim,3)! polynomial
double precision :: P_a(0:max_dim,3), P_b(0:max_dim,3) integer :: n_new, i, j
integer :: n_new,i,j double precision :: P_a(0:max_dim,3), P_b(0:max_dim,3)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: P_a, P_b !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: P_a, P_b
iorder(1) = 0 iorder(1) = 0
@ -87,46 +87,46 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
P_new(0,2) = 0.d0 P_new(0,2) = 0.d0
P_new(0,3) = 0.d0 P_new(0,3) = 0.d0
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center) call gaussian_product(alpha, A_center, beta, B_center, fact_k, p, P_center)
if (fact_k < thresh) then if(fact_k < thresh) then
! IF fact_k is too smal then: ! IF fact_k is too smal then:
! returns a "s" function centered in zero ! returns a "s" function centered in zero
! with an inifinite exponent and a zero polynom coef ! with an inifinite exponent and a zero polynom coef
P_center = 0.d0 P_center = 0.d0
p = 1.d+15 p = 1.d+15
fact_k = 0.d0 fact_k = 0.d0
return return
endif endif
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call recentered_poly2(P_a(0,1),A_center(1),P_center(1),a(1),P_b(0,1),B_center(1),P_center(1),b(1)) call recentered_poly2(P_a(0,1), A_center(1), P_center(1), a(1), P_b(0,1), B_center(1), P_center(1), b(1))
iorder(1) = a(1) + b(1) iorder(1) = a(1) + b(1)
do i=0,iorder(1) do i = 0, iorder(1)
P_new(i,1) = 0.d0 P_new(i,1) = 0.d0
enddo enddo
n_new=0 n_new = 0
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_poly(P_a(0,1),a(1),P_b(0,1),b(1),P_new(0,1),n_new) call multiply_poly(P_a(0,1), a(1), P_b(0,1), b(1), P_new(0,1), n_new)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call recentered_poly2(P_a(0,2),A_center(2),P_center(2),a(2),P_b(0,2),B_center(2),P_center(2),b(2)) call recentered_poly2(P_a(0,2), A_center(2), P_center(2), a(2), P_b(0,2), B_center(2), P_center(2), b(2))
iorder(2) = a(2) + b(2) iorder(2) = a(2) + b(2)
do i=0,iorder(2) do i = 0, iorder(2)
P_new(i,2) = 0.d0 P_new(i,2) = 0.d0
enddo enddo
n_new=0 n_new = 0
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_poly(P_a(0,2),a(2),P_b(0,2),b(2),P_new(0,2),n_new) call multiply_poly(P_a(0,2), a(2), P_b(0,2), b(2), P_new(0,2), n_new)
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call recentered_poly2(P_a(0,3),A_center(3),P_center(3),a(3),P_b(0,3),B_center(3),P_center(3),b(3)) call recentered_poly2(P_a(0,3), A_center(3), P_center(3), a(3), P_b(0,3), B_center(3), P_center(3), b(3))
iorder(3) = a(3) + b(3) iorder(3) = a(3) + b(3)
do i=0,iorder(3) do i = 0, iorder(3)
P_new(i,3) = 0.d0 P_new(i,3) = 0.d0
enddo enddo
n_new=0 n_new = 0
!DIR$ FORCEINLINE !DIR$ FORCEINLINE
call multiply_poly(P_a(0,3),a(3),P_b(0,3),b(3),P_new(0,3),n_new) call multiply_poly(P_a(0,3), a(3), P_b(0,3), b(3), P_new(0,3), n_new)
end end
@ -167,26 +167,33 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center, p, fact_k, io
call gaussian_product_v(alpha, A_center, LD_A, beta, B_center, fact_k, p, P_center, n_points) call gaussian_product_v(alpha, A_center, LD_A, beta, B_center, fact_k, p, P_center, n_points)
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0) if(ior(ior(b(1), b(2)), b(3)) == 0) then ! b == (0,0,0)
lda = maxval(a)
ldb = 0
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:0,3))
call recentered_poly2_v0(P_a, lda, A_center, LD_A, P_center, a, P_b, B_center, P_center, n_points)
iorder(1:3) = a(1:3) iorder(1:3) = a(1:3)
lda = maxval(a)
allocate(P_a(n_points,0:lda,3))
!ldb = 0
!allocate(P_b(n_points,0:0,3))
!call recentered_poly2_v0(P_a, lda, A_center, LD_A, P_center, a, P_b, B_center, P_center, n_points)
call recentered_poly2_v0(P_a, lda, A_center, LD_A, P_center, a, n_points)
do ipoint = 1, n_points do ipoint = 1, n_points
do xyz = 1, 3 do xyz = 1, 3
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz) !P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz)
do i = 1, a(xyz) do i = 1, a(xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz) !P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
P_new(ipoint,i,xyz) = P_a(ipoint,i,xyz)
enddo enddo
enddo enddo
enddo enddo
return deallocate(P_a)
!deallocate(P_b)
return
endif endif
lda = maxval(a) lda = maxval(a)
@ -198,20 +205,27 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center, p, fact_k, io
iorder(1:3) = a(1:3) + b(1:3) iorder(1:3) = a(1:3) + b(1:3)
do xyz = 1, 3 do xyz = 1, 3
if (b(xyz) == 0) then if(b(xyz) == 0) then
do ipoint = 1, n_points do ipoint = 1, n_points
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz) !P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz)
do i = 1, a(xyz) do i = 1, a(xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz) !P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
P_new(ipoint,i,xyz) = P_a(ipoint,i,xyz)
enddo enddo
enddo enddo
else else
do i = 0, iorder(xyz) do i = 0, iorder(xyz)
do ipoint = 1, n_points do ipoint = 1, n_points
P_new(ipoint,i,xyz) = 0.d0 P_new(ipoint,i,xyz) = 0.d0
enddo enddo
enddo enddo
call multiply_poly_v(P_a(1,0,xyz), a(xyz), P_b(1,0,xyz), b(xyz), P_new(1,0,xyz), ldp, n_points) call multiply_poly_v(P_a(1,0,xyz), a(xyz), P_b(1,0,xyz), b(xyz), P_new(1,0,xyz), ldp, n_points)
endif endif
enddo enddo
@ -720,45 +734,57 @@ end subroutine recentered_poly2_v
! --- ! ---
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, P_new2, x_B, x_Q, n_points) !subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, P_new2, x_B, x_Q, n_points)
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, n_points)
BEGIN_DOC BEGIN_DOC
!
! Recenter two polynomials. Special case for b=(0,0,0) ! Recenter two polynomials. Special case for b=(0,0,0)
!
! (x - A)^a (x - B)^0 = (x - P + P - A)^a (x - Q + Q - B)^0
! = (x - P + P - A)^a
!
END_DOC END_DOC
implicit none implicit none
integer, intent(in) :: a(3), n_points, lda, LD_xA integer, intent(in) :: a(3), n_points, lda, LD_xA
double precision, intent(in) :: x_A(LD_xA,3) double precision, intent(in) :: x_A(LD_xA,3), x_P(n_points,3)
double precision, intent(in) :: x_B(3) !double precision, intent(in) :: x_B(3), x_Q(n_points,3)
double precision, intent(in) :: x_P(n_points,3), x_Q(n_points,3) double precision, intent(out) :: P_new(n_points,0:lda,3)
double precision, intent(out) :: P_new(n_points,0:lda,3), P_new2(n_points,3) !double precision, intent(out) :: P_new2(n_points,3)
integer :: i, j, k, l, xyz, ipoint, maxab(3) integer :: i, j, k, l, xyz, ipoint, maxab(3)
double precision :: fa double precision :: fa
double precision, allocatable :: pows_a(:,:), pows_b(:,:) double precision, allocatable :: pows_a(:,:)
!double precision, allocatable :: pows_b(:,:)
double precision :: binom_func double precision :: binom_func
maxab(1:3) = max(a(1:3),(/0,0,0/)) maxab(1:3) = max(a(1:3), (/0,0,0/))
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) ) allocate(pows_a(n_points,-2:maxval(maxab)+4))
!allocate(pows_b(n_points,-2:maxval(maxab)+4))
do xyz = 1, 3 do xyz = 1, 3
if (a(xyz)<0) cycle if(a(xyz) < 0) cycle
do ipoint=1,n_points
do ipoint = 1, n_points
pows_a(ipoint,0) = 1.d0 pows_a(ipoint,0) = 1.d0
pows_a(ipoint,1) = (x_P(ipoint,xyz) - x_A(ipoint,xyz)) pows_a(ipoint,1) = (x_P(ipoint,xyz) - x_A(ipoint,xyz))
pows_b(ipoint,0) = 1.d0 !pows_b(ipoint,0) = 1.d0
pows_b(ipoint,1) = (x_Q(ipoint,xyz) - x_B(xyz)) !pows_b(ipoint,1) = (x_Q(ipoint,xyz) - x_B(xyz))
enddo enddo
do i = 2,maxab(xyz)
do ipoint=1,n_points do i = 2, maxab(xyz)
pows_a(ipoint,i) = pows_a(ipoint,i-1)*pows_a(ipoint,1) do ipoint = 1, n_points
pows_b(ipoint,i) = pows_b(ipoint,i-1)*pows_b(ipoint,1) pows_a(ipoint,i) = pows_a(ipoint,i-1) * pows_a(ipoint,1)
!pows_b(ipoint,i) = pows_b(ipoint,i-1) * pows_b(ipoint,1)
enddo enddo
enddo enddo
do ipoint=1,n_points
do ipoint = 1, n_points
P_new (ipoint,0,xyz) = pows_a(ipoint,a(xyz)) P_new (ipoint,0,xyz) = pows_a(ipoint,a(xyz))
P_new2(ipoint,xyz) = pows_b(ipoint,0) !P_new2(ipoint,xyz) = pows_b(ipoint,0)
enddo enddo
do i = 1, min(a(xyz), 20) do i = 1, min(a(xyz), 20)
fa = binom_transp(a(xyz)-i, a(xyz)) fa = binom_transp(a(xyz)-i, a(xyz))
@ -775,11 +801,12 @@ subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, P_new2, x_B, x_Q,
enddo !xyz enddo !xyz
deallocate(pows_a, pows_b) deallocate(pows_a)
!deallocate(pows_b)
end subroutine recentered_poly2_v0 end subroutine recentered_poly2_v0
!-- ! ---
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol) subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)

View File

@ -31,7 +31,10 @@ double precision function overlap_gaussian_x(A_center,B_center,alpha,beta,power_
overlap_gaussian_x*= fact_p overlap_gaussian_x*= fact_p
end end
! ---
! TODO
! gaussian_product is called twice: in give_explicit_poly_and_gaussian and here
subroutine overlap_gaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, overlap_x, overlap_y, overlap_z, overlap, dim) subroutine overlap_gaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, overlap_x, overlap_y, overlap_z, overlap, dim)
BEGIN_DOC BEGIN_DOC
@ -45,51 +48,50 @@ subroutine overlap_gaussian_xyz(A_center, B_center, alpha, beta, power_A, power_
include 'constants.include.F' include 'constants.include.F'
implicit none implicit none
integer,intent(in) :: dim ! dimension maximum for the arrays representing the polynomials integer, intent(in) :: dim ! dimension maximum for the arrays representing the polynomials
double precision,intent(in) :: A_center(3),B_center(3) ! center of the x1 functions integer, intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
double precision, intent(in) :: alpha,beta double precision, intent(in) :: A_center(3), B_center(3) ! center of the x1 functions
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions double precision, intent(in) :: alpha, beta
double precision, intent(out) :: overlap_x,overlap_y,overlap_z,overlap double precision, intent(out) :: overlap_x, overlap_y, overlap_z, overlap
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,p integer :: i, nmax, iorder_p(3)
double precision :: F_integral_tab(0:max_dim) double precision :: P_new(0:max_dim,3), P_center(3), fact_p, p
integer :: iorder_p(3) double precision :: F_integral_tab(0:max_dim)
integer :: nmax
double precision :: F_integral double precision :: F_integral
call give_explicit_poly_and_gaussian(P_new, P_center, p, fact_p, iorder_p, alpha, beta, power_A, power_B, A_center, B_center, dim) call give_explicit_poly_and_gaussian(P_new, P_center, p, fact_p, iorder_p, alpha, beta, power_A, power_B, A_center, B_center, dim)
if(fact_p.lt.1d-20)then if(fact_p .lt. 1d-20) then
overlap_x = 1.d-10 overlap_x = 1.d-10
overlap_y = 1.d-10 overlap_y = 1.d-10
overlap_z = 1.d-10 overlap_z = 1.d-10
overlap = 1.d-10 overlap = 1.d-10
return return
endif endif
nmax = maxval(iorder_p) nmax = maxval(iorder_p)
do i = 0,nmax do i = 0, nmax
F_integral_tab(i) = F_integral(i,p) F_integral_tab(i) = F_integral(i, p)
enddo enddo
overlap_x = P_new(0,1) * F_integral_tab(0) overlap_x = P_new(0,1) * F_integral_tab(0)
overlap_y = P_new(0,2) * F_integral_tab(0) overlap_y = P_new(0,2) * F_integral_tab(0)
overlap_z = P_new(0,3) * F_integral_tab(0) overlap_z = P_new(0,3) * F_integral_tab(0)
integer :: i
do i = 1,iorder_p(1) do i = 1,iorder_p(1)
overlap_x = overlap_x + P_new(i,1) * F_integral_tab(i) overlap_x = overlap_x + P_new(i,1) * F_integral_tab(i)
enddo enddo
call gaussian_product_x(alpha,A_center(1),beta,B_center(1),fact_p,p,P_center(1)) call gaussian_product_x(alpha, A_center(1), beta, B_center(1), fact_p, p, P_center(1))
overlap_x *= fact_p overlap_x *= fact_p
do i = 1,iorder_p(2) do i = 1, iorder_p(2)
overlap_y = overlap_y + P_new(i,2) * F_integral_tab(i) overlap_y = overlap_y + P_new(i,2) * F_integral_tab(i)
enddo enddo
call gaussian_product_x(alpha,A_center(2),beta,B_center(2),fact_p,p,P_center(2)) call gaussian_product_x(alpha, A_center(2), beta, B_center(2), fact_p, p, P_center(2))
overlap_y *= fact_p overlap_y *= fact_p
do i = 1,iorder_p(3) do i = 1,iorder_p(3)
overlap_z = overlap_z + P_new(i,3) * F_integral_tab(i) overlap_z = overlap_z + P_new(i,3) * F_integral_tab(i)
enddo enddo
call gaussian_product_x(alpha,A_center(3),beta,B_center(3),fact_p,p,P_center(3)) call gaussian_product_x(alpha, A_center(3), beta, B_center(3), fact_p, p, P_center(3))
overlap_z *= fact_p overlap_z *= fact_p
overlap = overlap_x * overlap_y * overlap_z overlap = overlap_x * overlap_y * overlap_z
@ -183,7 +185,7 @@ subroutine overlap_gaussian_xyz_v(A_center, B_center, alpha, beta, power_A, powe
double precision :: F_integral double precision :: F_integral
double precision, allocatable :: P_new(:,:,:), P_center(:,:), fact_p(:) double precision, allocatable :: P_new(:,:,:), P_center(:,:), fact_p(:)
ldp = maxval( power_A(1:3) + power_B(1:3) ) ldp = maxval(power_A(1:3) + power_B(1:3))
allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points)) allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points))