diff --git a/src/ao_one_e_ints/aos_cgtos.irp.f b/src/ao_one_e_ints/aos_cgtos.irp.f index c9713b7d..ae87b3a9 100644 --- a/src/ao_one_e_ints/aos_cgtos.irp.f +++ b/src/ao_one_e_ints/aos_cgtos.irp.f @@ -30,9 +30,9 @@ END_PROVIDER ao_expo_pw_ord_transp(m,i,j) = ao_expo_pw_ord(m,j,i) ao_expo_phase_ord_transp(m,i,j) = ao_expo_phase_ord(m,j,i) enddo - ao_expo_pw_ord_transp(4,i,j) = ao_expo_pw_ord_transp(1,i,j) & - + ao_expo_pw_ord_transp(2,i,j) & - + ao_expo_pw_ord_transp(3,i,j) + ao_expo_pw_ord_transp(4,i,j) = ao_expo_pw_ord_transp(1,i,j) * ao_expo_pw_ord_transp(1,i,j) & + + ao_expo_pw_ord_transp(2,i,j) * ao_expo_pw_ord_transp(2,i,j) & + + ao_expo_pw_ord_transp(3,i,j) * ao_expo_pw_ord_transp(3,i,j) ao_expo_phase_ord_transp(4,i,j) = ao_expo_phase_ord_transp(1,j,i) & + ao_expo_phase_ord_transp(2,j,i) & + ao_expo_phase_ord_transp(3,j,i) @@ -199,7 +199,6 @@ END_PROVIDER alpha = ao_expo_cgtos_ord_transp(n,j) alpha_inv = (1.d0, 0.d0) / alpha - do m = 1, 3 phiA(m) = ao_expo_phase_ord_transp(m,n,j) A_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * alpha_inv * ao_expo_pw_ord_transp(m,n,j) @@ -210,7 +209,6 @@ END_PROVIDER beta = ao_expo_cgtos_ord_transp(l,i) beta_inv = (1.d0, 0.d0) / beta - do m = 1, 3 phiB(m) = ao_expo_phase_ord_transp(m,l,i) B_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * beta_inv * ao_expo_pw_ord_transp(m,l,i) @@ -232,7 +230,7 @@ END_PROVIDER call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_x1, overlap_y1, overlap_z1, overlap1, dim1) - call overlap_cgaussian_xyz(A_center, B_center, conjg(alpha), beta, power_A, power_B, & + call overlap_cgaussian_xyz(conjg(A_center), B_center, conjg(alpha), beta, power_A, power_B, & overlap_x2, overlap_y2, overlap_z2, overlap2, dim1) overlap_x = 2.d0 * real(C1(1) * overlap_x1 + C2(1) * overlap_x2) diff --git a/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f b/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f index b7a9c6fe..d4adaf62 100644 --- a/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f +++ b/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f @@ -54,7 +54,7 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)] A_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * alpha_inv * ao_expo_pw_ord_transp(m,n,j) enddo phiA = ao_expo_phase_ord_transp(4,n,j) - KA2 = ao_expo_pw_ord_transp(4,n,j) * ao_expo_pw_ord_transp(4,n,j) + KA2 = ao_expo_pw_ord_transp(4,n,j) do l = 1, ao_prim_num(i) @@ -65,7 +65,7 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)] B_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * beta_inv * ao_expo_pw_ord_transp(m,l,i) enddo phiB = ao_expo_phase_ord_transp(4,l,i) - KB2 = ao_expo_pw_ord_transp(4,l,i) * ao_expo_pw_ord_transp(4,l,i) + KB2 = ao_expo_pw_ord_transp(4,l,i) C1 = zexp((0.d0, 1.d0) * (-phiA - phiB) - 0.25d0 * (alpha_inv * KA2 + beta_inv * KB2)) C2 = zexp((0.d0, 1.d0) * ( phiA - phiB) - 0.25d0 * (conjg(alpha_inv) * KA2 + beta_inv * KB2)) @@ -79,7 +79,7 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)] I1 = NAI_pol_mult_cgtos(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_max_integrals) - I2 = NAI_pol_mult_cgtos(A_center, B_center, power_A, power_B, conjg(alpha), beta, C_center, n_pt_max_integrals) + I2 = NAI_pol_mult_cgtos(conjg(A_center), B_center, power_A, power_B, conjg(alpha), beta, C_center, n_pt_max_integrals) c = c - Z * 2.d0 * real(C1 * I1 + C2 * I2) enddo diff --git a/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f b/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f index 729f0a82..99ed82eb 100644 --- a/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f +++ b/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f @@ -70,33 +70,31 @@ alpha = ao_expo_cgtos_ord_transp(n,j) alpha_inv = (1.d0, 0.d0) / alpha - do m = 1, 3 A_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * alpha_inv * ao_expo_pw_ord_transp(m,n,j) enddo phiA = ao_expo_phase_ord_transp(4,n,j) - KA2 = ao_expo_pw_ord_transp(4,n,j) * ao_expo_pw_ord_transp(4,n,j) + KA2 = ao_expo_pw_ord_transp(4,n,j) do l = 1, ao_prim_num(i) beta = ao_expo_cgtos_ord_transp(l,i) beta_inv = (1.d0, 0.d0) / beta - do m = 1, 3 B_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * beta_inv * ao_expo_pw_ord_transp(m,l,i) enddo phiB = ao_expo_phase_ord_transp(4,l,i) - KB2 = ao_expo_pw_ord_transp(4,l,i) * ao_expo_pw_ord_transp(4,l,i) + KB2 = ao_expo_pw_ord_transp(4,l,i) c = ao_coef_cgtos_norm_ord_transp(n,j) * ao_coef_cgtos_norm_ord_transp(l,i) - C1 = zexp((0.d0, 1.d0) * (-phiA - phiB) - 0.25d0 * (alpha_inv * KA2 + beta_inv * KB2)) - C2 = zexp((0.d0, 1.d0) * ( phiA - phiB) - 0.25d0 * (conjg(alpha_inv) * KA2 + beta_inv * KB2)) + C1 = zexp((0.d0, 1.d0) * (-phiA - phiB) - 0.25d0 * (alpha_inv * KA2 + beta_inv * KB2)) + C2 = zexp((0.d0, 1.d0) * (-phiA + phiB) - 0.25d0 * (alpha_inv * KA2 + conjg(beta_inv) * KB2)) call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_x0_1, overlap_y0_1, overlap_z0_1, overlap, dim1) - call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, & + call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, & overlap_x0_2, overlap_y0_2, overlap_z0_2, overlap, dim1) ! --- @@ -106,7 +104,7 @@ call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_m2_1, overlap_y, overlap_z, overlap, dim1) - call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, & + call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, & overlap_m2_2, overlap_y, overlap_z, overlap, dim1) else overlap_m2_1 = (0.d0, 0.d0) @@ -117,7 +115,7 @@ call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_p2_1, overlap_y, overlap_z, overlap, dim1) - call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, & + call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, & overlap_p2_2, overlap_y, overlap_z, overlap, dim1) power_A(1) = power_A(1) - 2 @@ -141,7 +139,7 @@ call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_x, overlap_m2_1, overlap_y, overlap, dim1) - call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, & + call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, & overlap_x, overlap_m2_2, overlap_y, overlap, dim1) else overlap_m2_1 = (0.d0, 0.d0) @@ -152,7 +150,7 @@ call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_x, overlap_p2_1, overlap_y, overlap, dim1) - call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, & + call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, & overlap_x, overlap_p2_2, overlap_y, overlap, dim1) power_A(2) = power_A(2) - 2 @@ -176,7 +174,7 @@ call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_x, overlap_y, overlap_m2_1, overlap, dim1) - call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, & + call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, & overlap_x, overlap_y, overlap_m2_2, overlap, dim1) else overlap_m2_1 = (0.d0, 0.d0) @@ -187,7 +185,7 @@ call overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & overlap_x, overlap_y, overlap_p2_1, overlap, dim1) - call overlap_cgaussian_xyz(A_center, B_center, alpha, conjg(beta), power_A, power_B, & + call overlap_cgaussian_xyz(A_center, conjg(B_center), alpha, conjg(beta), power_A, power_B, & overlap_x, overlap_y, overlap_p2_2, overlap, dim1) power_A(3) = power_A(3) - 2 @@ -227,11 +225,12 @@ BEGIN_PROVIDER [double precision, ao_kinetic_integrals_cgtos, (ao_num, ao_num)] END_DOC implicit none + integer :: i, j - !$OMP PARALLEL DO DEFAULT(NONE) & - !$OMP PRIVATE(i, j) & - !$OMP SHARED(ao_num, ao_kinetic_integrals_cgtos, ao_deriv2_cgtos_x, ao_deriv2_cgtos_y, ao_deriv2_cgtos_z) + !$OMP PARALLEL DO DEFAULT(NONE) & + !$OMP PRIVATE(i, j) & + !$OMP SHARED(ao_num, ao_kinetic_integrals_cgtos, ao_deriv2_cgtos_x, ao_deriv2_cgtos_y, ao_deriv2_cgtos_z) do j = 1, ao_num do i = 1, ao_num ao_kinetic_integrals_cgtos(i,j) = -0.5d0 * (ao_deriv2_cgtos_x(i,j) + & @@ -239,8 +238,9 @@ BEGIN_PROVIDER [double precision, ao_kinetic_integrals_cgtos, (ao_num, ao_num)] ao_deriv2_cgtos_z(i,j)) enddo enddo - !$OMP END PARALLEL DO + !$OMP END PARALLEL DO END_PROVIDER ! --- + diff --git a/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f b/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f index 0d95ced4..adc8feeb 100644 --- a/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f +++ b/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f @@ -70,7 +70,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i) enddo phiI = ao_expo_phase_ord_transp(4,p,i) - KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i) + KI2 = ao_expo_pw_ord_transp(4,p,i) do q = 1, ao_prim_num(j) @@ -81,7 +81,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j) enddo phiJ = ao_expo_phase_ord_transp(4,q,j) - KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j) + KJ2 = ao_expo_pw_ord_transp(4,q,j) call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, & expo1, expo2, I_power, J_power, I_center, J_center, dim1) @@ -100,7 +100,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k) enddo phiK = ao_expo_phase_ord_transp(4,r,k) - KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k) + KK2 = ao_expo_pw_ord_transp(4,r,k) do s = 1, ao_prim_num(l) @@ -111,7 +111,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l) enddo phiL = ao_expo_phase_ord_transp(4,s,l) - KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l) + KL2 = ao_expo_pw_ord_transp(4,s,l) call give_explicit_cpoly_and_cgaussian(Q1_new, Q1_center, qq1, fact_q1, iorder_q1, & expo3, expo4, K_power, L_power, K_center, L_center, dim1) @@ -189,7 +189,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i) enddo phiI = ao_expo_phase_ord_transp(4,p,i) - KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i) + KI2 = ao_expo_pw_ord_transp(4,p,i) do q = 1, ao_prim_num(j) @@ -200,7 +200,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j) enddo phiJ = ao_expo_phase_ord_transp(4,q,j) - KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j) + KJ2 = ao_expo_pw_ord_transp(4,q,j) do r = 1, ao_prim_num(k) @@ -211,7 +211,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k) enddo phiK = ao_expo_phase_ord_transp(4,r,k) - KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k) + KK2 = ao_expo_pw_ord_transp(4,r,k) do s = 1, ao_prim_num(l) @@ -222,7 +222,7 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l) enddo phiL = ao_expo_phase_ord_transp(4,s,l) - KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l) + KL2 = ao_expo_pw_ord_transp(4,s,l) C1 = zexp((0.d0, 1.d0) * (-phiI - phiJ - phiK - phiL) & - 0.25d0 * (expo1_inv * KI2 + expo2_inv * KJ2 + expo3_inv * KK2 + expo4_inv * KL2)) @@ -366,7 +366,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,r,k) enddo phiK = ao_expo_phase_ord_transp(4,r,k) - KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k) + KK2 = ao_expo_pw_ord_transp(4,r,k) schwartz_kl(0,r) = 0.d0 do s = 1, ao_prim_num(l) @@ -378,7 +378,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,s,l) enddo phiL = ao_expo_phase_ord_transp(4,s,l) - KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l) + KL2 = ao_expo_pw_ord_transp(4,s,l) call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, & expo1, expo2, K_power, L_power, K_center, L_center, dim1) @@ -452,7 +452,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i) enddo phiI = ao_expo_phase_ord_transp(4,p,i) - KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i) + KI2 = ao_expo_pw_ord_transp(4,p,i) do q = 1, ao_prim_num(j) @@ -463,7 +463,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j) enddo phiJ = ao_expo_phase_ord_transp(4,q,j) - KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j) + KJ2 = ao_expo_pw_ord_transp(4,q,j) call give_explicit_cpoly_and_cgaussian(P1_new, P1_center, pp1, fact_p1, iorder_p1, & expo1, expo2, I_power, J_power, I_center, J_center, dim1) @@ -533,7 +533,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k) enddo phiK = ao_expo_phase_ord_transp(4,r,k) - KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k) + KK2 = ao_expo_pw_ord_transp(4,r,k) do s = 1, ao_prim_num(l) if(schwartz_kl(s,r)*schwartz_ij < thr) cycle @@ -545,7 +545,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l) enddo phiL = ao_expo_phase_ord_transp(4,s,l) - KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l) + KL2 = ao_expo_pw_ord_transp(4,s,l) call give_explicit_cpoly_and_cgaussian(Q1_new, Q1_center, qq1, fact_q1, iorder_q1, & expo3, expo4, K_power, L_power, K_center, L_center, dim1) @@ -624,7 +624,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,r,k) enddo phiK = ao_expo_phase_ord_transp(4,r,k) - KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k) + KK2 = ao_expo_pw_ord_transp(4,r,k) schwartz_kl(0,r) = 0.d0 do s = 1, ao_prim_num(l) @@ -636,7 +636,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,s,l) enddo phiL = ao_expo_phase_ord_transp(4,s,l) - KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l) + KL2 = ao_expo_pw_ord_transp(4,s,l) C1 = zexp(-(0.d0, 2.d0) * (phiK + phiL) - 0.5d0 * (expo1_inv * KK2 + expo2_inv * KL2)) C2 = zexp(-(0.d0, 2.d0) * phiL - 0.5d0 * (real(expo1_inv) * KK2 + expo2_inv * KL2)) @@ -708,7 +708,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) I_center(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo1_inv * ao_expo_pw_ord_transp(m,p,i) enddo phiI = ao_expo_phase_ord_transp(4,p,i) - KI2 = ao_expo_pw_ord_transp(4,p,i) * ao_expo_pw_ord_transp(4,p,i) + KI2 = ao_expo_pw_ord_transp(4,p,i) do q = 1, ao_prim_num(j) @@ -719,7 +719,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) J_center(m) = nucl_coord(jj,m) - (0.d0, 0.5d0) * expo2_inv * ao_expo_pw_ord_transp(m,q,j) enddo phiJ = ao_expo_phase_ord_transp(4,q,j) - KJ2 = ao_expo_pw_ord_transp(4,q,j) * ao_expo_pw_ord_transp(4,q,j) + KJ2 = ao_expo_pw_ord_transp(4,q,j) C1 = zexp(-(0.d0, 2.d0) * (phiI + phiJ) - 0.5d0 * (expo1_inv * KI2 + expo2_inv * KJ2)) C2 = zexp(-(0.d0, 2.d0) * phiJ - 0.5d0 * (real(expo1_inv) * KI2 + expo2_inv * KJ2)) @@ -788,7 +788,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) K_center(m) = nucl_coord(kk,m) - (0.d0, 0.5d0) * expo3_inv * ao_expo_pw_ord_transp(m,r,k) enddo phiK = ao_expo_phase_ord_transp(4,r,k) - KK2 = ao_expo_pw_ord_transp(4,r,k) * ao_expo_pw_ord_transp(4,r,k) + KK2 = ao_expo_pw_ord_transp(4,r,k) do s = 1, ao_prim_num(l) if(schwartz_kl(s,r)*schwartz_ij < thr) cycle @@ -800,7 +800,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) L_center(m) = nucl_coord(ll,m) - (0.d0, 0.5d0) * expo4_inv * ao_expo_pw_ord_transp(m,s,l) enddo phiL = ao_expo_phase_ord_transp(4,s,l) - KL2 = ao_expo_pw_ord_transp(4,s,l) * ao_expo_pw_ord_transp(4,s,l) + KL2 = ao_expo_pw_ord_transp(4,s,l) C1 = zexp((0.d0, 1.d0) * (-phiI - phiJ - phiK - phiL) & - 0.25d0 * (expo1_inv * KI2 + expo2_inv * KJ2 + expo3_inv * KK2 + expo4_inv * KL2)) diff --git a/src/utils/cgtos_one_e.irp.f b/src/utils/cgtos_one_e.irp.f index 43ca8224..80b82eaf 100644 --- a/src/utils/cgtos_one_e.irp.f +++ b/src/utils/cgtos_one_e.irp.f @@ -42,12 +42,12 @@ complex*16 function overlap_cgaussian_x(A_center, B_center, alpha, beta, power_A overlap_cgaussian_x *= fact_p -end function overlap_cgaussian_x +end ! --- -subroutine overlap_cgaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B & - , overlap_x, overlap_y, overlap_z, overlap, dim ) +subroutine overlap_cgaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, & + overlap_x, overlap_y, overlap_z, overlap, dim ) BEGIN_DOC ! @@ -113,7 +113,7 @@ subroutine overlap_cgaussian_xyz( A_center, B_center, alpha, beta, power_A, powe overlap = overlap_x * overlap_y * overlap_z -end subroutine overlap_cgaussian_xyz +end ! ---