9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 00:55:38 +01:00

Introducing dpcpp

This commit is contained in:
Anthony Scemama 2024-07-09 21:11:13 +02:00
parent 9ad69bb27d
commit dd9c6dcc03
5 changed files with 282 additions and 2 deletions

8
configure vendored
View File

@ -40,7 +40,7 @@ Usage:
$(basename $0) -c <file>
$(basename $0) -h
$(basename $0) -i <package>
$(basename $0) -g [nvidia|none]
$(basename $0) -g [nvidia|intel|none]
Options:
-c <file> Define a COMPILATION configuration file,
@ -49,7 +49,7 @@ Options:
-i <package> INSTALL <package>. Use at your OWN RISK:
no support will be provided for the installation of
dependencies.
-g [nvidia|none] Choose GPU acceleration (experimental)
-g [nvidia|intel|none] Choose GPU acceleration
Example:
./$(basename $0) -c config/gfortran.cfg
@ -121,6 +121,10 @@ case "$GPU" in
echo "Activating AMD GPU acceleration"
ln -s ${QP_ROOT}/plugins/local/gpu_amd ${QP_ROOT}/src/gpu_arch
;;
intel) # Intel
echo "Activating Intel GPU acceleration"
ln -s ${QP_ROOT}/plugins/local/gpu_intel ${QP_ROOT}/src/gpu_arch
;;
nvidia) # Nvidia
echo "Activating Nvidia GPU acceleration"
ln -s ${QP_ROOT}/plugins/local/gpu_nvidia ${QP_ROOT}/src/gpu_arch

View File

@ -0,0 +1 @@
-lmkl_sycl -lsycl

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,8 @@
=========
gpu_intel
=========
Intel implementation of GPU routines. Uses MKL and SYCL.
```bash
dpcpp -O3 -c gpu.o gpu.sycl
```

View File

@ -0,0 +1,266 @@
#include <CL/sycl.hpp>
#include <cassert>
#include <limits>
#include <oneapi/mkl/blas.hpp>
extern "C" {
/* Generic functions */
int gpu_ndevices() {
return 1;
}
void gpu_set_device(int32_t igpu) {
}
/* Allocation functions */
void gpu_allocate(void** ptr, int64_t size) {
auto queue = sycl::queue(sycl::default_selector{});
try {
*ptr = sycl::malloc_shared(size, queue);
assert(*ptr != nullptr);
} catch (const sycl::exception& e) {
std::cerr << "SYCL exception caught: " << e.what() << std::endl;
*ptr = nullptr; // If allocation fails, set pointer to nullptr
}
}
void gpu_deallocate(void** ptr) {
assert(*ptr != nullptr);
sycl::free(*ptr, sycl::queue(sycl::default_selector{}));
*ptr = nullptr;
}
/* Upload data from host to device */
void gpu_upload(const void* cpu_ptr, void* gpu_ptr, const int64_t n) {
sycl::queue queue(sycl::default_selector{});
queue.memcpy(gpu_ptr, cpu_ptr, n).wait();
}
/* Download data from device to host */
void gpu_download(const void* gpu_ptr, void* cpu_ptr, const int64_t n) {
sycl::queue queue(sycl::default_selector{});
queue.memcpy(cpu_ptr, gpu_ptr, n).wait();
}
/* Copy data from one GPU memory location to another */
void gpu_copy(const void* gpu_ptr_src, void* gpu_ptr_dest, const int64_t n) {
sycl::queue queue(sycl::default_selector{});
queue.memcpy(gpu_ptr_dest, gpu_ptr_src, n).wait();
}
/* Queues */
/* SYCL queue as a replacement for CUDA stream */
void gpu_stream_create(sycl::queue** ptr) {
*ptr = new sycl::queue(sycl::default_selector{});
}
void gpu_stream_destroy(sycl::queue** ptr) {
assert(*ptr != nullptr);
delete *ptr;
*ptr = nullptr;
}
To translate the CUDA functions related to stream management to SYCL, you will need to adapt to SYCL's approach to command groups and queues. SYCL uses queues to manage execution order and parallelism, similar to CUDA streams but integrated within the SYCL ecosystem.
### Original CUDA Code
```c
/* Create a CUDA stream */
void gpu_stream_create(cudaStream_t* ptr) {
cudaError_t rc = cudaStreamCreate(ptr);
assert(rc == cudaSuccess);
}
/* Destroy a CUDA stream */
void gpu_stream_destroy(cudaStream_t* ptr) {
assert(ptr != NULL);
cudaError_t rc = cudaStreamDestroy(*ptr);
assert(rc == cudaSuccess);
*ptr = NULL;
}
/* Set a specific stream for cuBLAS operations */
void gpu_set_stream(cublasHandle_t handle, cudaStream_t stream) {
cublasSetStream(handle, stream);
}
/* Synchronize all streams */
void gpu_synchronize() {
cudaDeviceSynchronize();
}
```
### Translated SYCL Code
```cpp
#include <CL/sycl.hpp>
#include <cassert>
/* SYCL queue as a replacement for CUDA stream */
void gpu_stream_create(sycl::queue** ptr) {
*ptr = new sycl::queue(sycl::default_selector{});
}
void gpu_stream_destroy(sycl::queue** ptr) {
*ptr->wait_and_throw();
assert(*ptr != nullptr);
delete *ptr;
*ptr = nullptr;
}
/* SYCL does not need an equivalent for setting a stream on a cuBLAS handle,
because each SYCL queue acts independently and can be used directly. */
void gpu_synchronize() {
sycl::queue queue(sycl::default_selector{});
queue.wait_and_throw();
}
/* BLAS functions */
typedef struct {
sycl::queue* queue;
} blasHandle_t;
void gpu_set_stream(blasHandle_t* handle, sycl::queue* ptr) {
handle->queue = ptr;
}
void gpu_blas_create(blasHandle_t* ptr) {
*ptr = new blasHandle_t;
assert(*ptr != nullptr);
ptr->queue = new sycl::queue(sycl::default_selector{});
assert(ptr->queue != nullptr);
}
void gpu_blas_destroy(blasHandle_t* ptr) {
assert(*ptr != nullptr);
delete ptr->queue;
delete *ptr;
*ptr = nullptr;
}
void gpu_ddot(blasHandle_t* handle, const int64_t n, const double* x, const int64_t incx,
const double* y, const int64_t incy, double* result) {
// Ensure input parameters are valid
assert(handle != nullptr);
assert(handle->queue != nullptr);
assert(n > 0);
assert(incx > 0);
assert(incy > 0);
assert(x != nullptr);
assert(y != nullptr);
assert(result != nullptr);
// SYCL buffer for the result
sycl::buffer<double, 1> result_buf(result, sycl::range<1>(1));
sycl::queue& queue = handle->queue;
// Perform the dot product operation
queue.submit([&](sycl::handler& cgh) {
// Accessors for the buffers
auto result_acc = result_buf.get_access<sycl::access::mode::write>(cgh);
// This is an asynchronous call to compute dot product
cgh.single_task([=]() {
result_acc[0] = oneapi::mkl::blas::dot(cgh, n, x, incx, y, incy);
});
});
}
void gpu_dgemv(blasHandle_t* handle, const char* transa, const int64_t m, const int64_t n, const double* alpha,
const double* a, const int64_t lda, const double* x, const int64_t incx, const double* beta, double* y, const int64_t incy) {
assert(handle != nullptr);
assert(handle->queue != nullptr);
// Validate matrix dimensions and increments to be positive
assert(m > 0 && n > 0 && lda > 0 && incx > 0 && incy > 0);
assert(a != nullptr && x != nullptr && y != nullptr && alpha != nullptr && beta != nullptr);
// Determine the operation type
oneapi::mkl::transpose transa_ = oneapi::mkl::transpose::nontrans;
if (*transa == 'T' || *transa == 't') {
transa_ = oneapi::mkl::transpose::trans;
}
// Perform DGEMV operation using oneMKL
handle->queue->submit([&](sycl::handler& cgh) {
// Use accessors to ensure data consistency and dependency resolution
auto a_acc = sycl::accessor(a, sycl::range(m * lda), sycl::read_only, cgh);
auto x_acc = sycl::accessor(x, sycl::range(n * incx), sycl::read_only, cgh);
auto y_acc = sycl::accessor(y, sycl::range(m * incy), sycl::read_write, cgh);
cgh.parallel_for(sycl::range(1), [=](sycl::id<1>) {
oneapi::mkl::blas::gemv(*handle->queue, transa_, m, n, *alpha, a_acc.get_pointer(), lda, x_acc.get_pointer(), incx, *beta, y_acc.get_pointer(), incy);
});
});
}
void gpu_dgemm(blasHandle_t* handle, const char* transa, const char* transb, const int64_t m, const int64_t n, const int64_t k, const double* alpha,
const double* a, const int64_t lda, const double* b, const int64_t ldb, const double* beta, double* c, const int64_t ldc) {
assert(handle != nullptr && handle->queue != nullptr);
assert(m > 0 && n > 0 && k > 0 && lda > 0 && ldb > 0 && ldc > 0);
assert(a != nullptr && b != nullptr && c != nullptr && alpha != nullptr && beta != nullptr);
// Transpose operations
auto transa_ = (*transa == 'T' || *transa == 't') ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::nontrans;
auto transb_ = (*transb == 'T' || *transb == 't') ? oneapi::mkl::transpose::trans : oneapi::mkl::transpose::nontrans;
// Ensure queue is ready
handle->queue->submit([&](sycl::handler& cgh) {
// Accessors for matrices
auto a_acc = sycl::accessor(a, sycl::range<1>(m * lda), sycl::read_only, cgh);
auto b_acc = sycl::accessor(b, sycl::range<1>(k * ldb), sycl::read_only, cgh);
auto c_acc = sycl::accessor(c, sycl::range<1>(m * ldc), sycl::read_write, cgh);
cgh.parallel_for(sycl::range(1), [=](sycl::id<1>) {
oneapi::mkl::blas::gemm(*handle->queue, transa_, transb_, m, n, k,
*alpha, a_acc.get_pointer(), lda,
b_acc.get_pointer(), ldb,
*beta, c_acc.get_pointer(), ldc);
});
});
}
void gpu_dgeam(blasHandle_t* handle, const char* transa, const char* transb, const int64_t m, const int64_t n, const double* alpha,
const double* a, const int64_t lda, const double* beta, const double* b, const int64_t ldb, double* c, const int64_t ldc) {
assert(handle != nullptr && handle->queue != nullptr);
assert(m > 0 && n > 0 && lda > 0 && ldb > 0 && ldc > 0);
assert(a != nullptr && b != nullptr && c != nullptr && alpha != nullptr && beta != nullptr);
// Determine transpose operations
bool transA = (*transa == 'T' || *transa == 't');
bool transB = (*transb == 'T' || *transb == 't');
handle->queue->submit([&](sycl::handler& cgh) {
auto a_acc = sycl::accessor(a, sycl::range(m * lda), sycl::read_only, cgh);
auto b_acc = sycl::accessor(b, sycl::range(n * ldb), sycl::read_only, cgh);
auto c_acc = sycl::accessor(c, sycl::range(m * ldc), sycl::read_write, cgh);
cgh.parallel_for(sycl::range<2>(m, n), [=](sycl::id<2> idx) {
int i = idx[0];
int j = idx[1];
int ai = transA ? j * lda + i : i * lda + j;
int bi = transB ? j * ldb + i : i * ldb + j;
int ci = i * ldc + j;
c_acc[ci] = (*alpha) * a_acc[ai] + (*beta) * b_acc[bi];
});
});
}
} // extern C