mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-23 03:53:29 +01:00
looking for bug in scf
This commit is contained in:
parent
5e83a2a853
commit
dd7b3131b8
@ -11,7 +11,7 @@
|
|||||||
integer :: i,j,k,l,k1,r,s
|
integer :: i,j,k,l,k1,r,s
|
||||||
integer :: i0,j0,k0,l0
|
integer :: i0,j0,k0,l0
|
||||||
integer*8 :: p,q
|
integer*8 :: p,q
|
||||||
double precision :: integral, c0
|
complex*16 :: integral, c0
|
||||||
double precision :: ao_two_e_integral, local_threshold
|
double precision :: ao_two_e_integral, local_threshold
|
||||||
double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
|
double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
|
||||||
double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:)
|
double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:)
|
||||||
@ -41,18 +41,23 @@
|
|||||||
allocate(keys(n_elements_max), values(n_elements_max))
|
allocate(keys(n_elements_max), values(n_elements_max))
|
||||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||||
ao_two_e_integral_alpha_tmp = 0.d0
|
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||||
ao_two_e_integral_beta_tmp = 0.d0
|
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||||
|
|
||||||
!$OMP DO SCHEDULE(static,1)
|
!$OMP DO SCHEDULE(static,1)
|
||||||
do i8=0_8,ao_integrals_map%map_size
|
do i8=0_8,ao_integrals_map%map_size
|
||||||
n_elements = n_elements_max
|
n_elements = n_elements_max
|
||||||
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
|
||||||
do k1=1,n_elements
|
do k1=1,n_elements
|
||||||
|
! get original key
|
||||||
|
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||||
key1 = shiftr(keys(k1)+1,1)
|
key1 = shiftr(keys(k1)+1,1)
|
||||||
|
|
||||||
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
|
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
|
||||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part
|
! i<=k, j<=l, ik<=jl
|
||||||
|
! ijkl, jilk, klij*, lkji*
|
||||||
|
|
||||||
|
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
|
||||||
do k2=1,4
|
do k2=1,4
|
||||||
if (ii(k2)==0) then
|
if (ii(k2)==0) then
|
||||||
cycle
|
cycle
|
||||||
@ -61,7 +66,12 @@
|
|||||||
j = jj(k2)
|
j = jj(k2)
|
||||||
k = kk(k2)
|
k = kk(k2)
|
||||||
l = ll(k2)
|
l = ll(k2)
|
||||||
integral = i_sign(k2)*values(k1)
|
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
|
||||||
|
|
||||||
|
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||||
|
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||||
|
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||||
|
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||||
|
|
||||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||||
|
|
||||||
@ -71,7 +81,7 @@
|
|||||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||||
enddo
|
enddo
|
||||||
else
|
else ! real part
|
||||||
do k2=1,4
|
do k2=1,4
|
||||||
if (ii(k2)==0) then
|
if (ii(k2)==0) then
|
||||||
cycle
|
cycle
|
||||||
@ -114,17 +124,21 @@
|
|||||||
allocate(keys(n_elements_max), values(n_elements_max))
|
allocate(keys(n_elements_max), values(n_elements_max))
|
||||||
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
|
||||||
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
ao_two_e_integral_beta_tmp(ao_num,ao_num))
|
||||||
ao_two_e_integral_alpha_tmp = 0.d0
|
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
|
||||||
ao_two_e_integral_beta_tmp = 0.d0
|
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
|
||||||
|
|
||||||
!$OMP DO SCHEDULE(static,1)
|
!$OMP DO SCHEDULE(static,1)
|
||||||
do i8=0_8,ao_integrals_map_2%map_size
|
do i8=0_8,ao_integrals_map_2%map_size
|
||||||
n_elements = n_elements_max
|
n_elements = n_elements_max
|
||||||
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
|
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
|
||||||
do k1=1,n_elements
|
do k1=1,n_elements
|
||||||
|
! get original key
|
||||||
|
! reverse of 2*key (imag part) and 2*key-1 (real part)
|
||||||
key1 = shiftr(keys(k1)+1,1)
|
key1 = shiftr(keys(k1)+1,1)
|
||||||
|
|
||||||
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
|
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
|
||||||
|
! i>=k, j<=l, ik<=jl
|
||||||
|
! ijkl, jilk, klij*, lkji*
|
||||||
if (shiftl(key1,1)==keys(k1)) then !imaginary part
|
if (shiftl(key1,1)==keys(k1)) then !imaginary part
|
||||||
do k2=1,4
|
do k2=1,4
|
||||||
if (ii(k2)==0) then
|
if (ii(k2)==0) then
|
||||||
@ -134,7 +148,12 @@
|
|||||||
j = jj(k2)
|
j = jj(k2)
|
||||||
k = kk(k2)
|
k = kk(k2)
|
||||||
l = ll(k2)
|
l = ll(k2)
|
||||||
integral = i_sign(k2)*values(k1)
|
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
|
||||||
|
|
||||||
|
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||||
|
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
|
||||||
|
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
|
||||||
|
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
|
||||||
|
|
||||||
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
|
||||||
|
|
||||||
@ -144,7 +163,7 @@
|
|||||||
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
|
||||||
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
|
||||||
enddo
|
enddo
|
||||||
else
|
else ! real part
|
||||||
do k2=1,4
|
do k2=1,4
|
||||||
if (ii(k2)==0) then
|
if (ii(k2)==0) then
|
||||||
cycle
|
cycle
|
||||||
|
@ -52,6 +52,11 @@ subroutine mo_as_eigvectors_of_mo_matrix_complex(matrix,n,m,label,sign,output)
|
|||||||
enddo
|
enddo
|
||||||
write (6,'(A)') '======== ================'
|
write (6,'(A)') '======== ================'
|
||||||
write (6,'(A)') ''
|
write (6,'(A)') ''
|
||||||
|
write (6,'(A)') 'Fock Matrix'
|
||||||
|
write (6,'(A)') '-----------'
|
||||||
|
do i=1,n
|
||||||
|
write(*,'(200(E24.15))') A(i,:)
|
||||||
|
enddo
|
||||||
endif
|
endif
|
||||||
|
|
||||||
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_new,size(mo_coef_new,1),R,size(R,1),(0.d0,0.d0),mo_coef_complex,size(mo_coef_complex,1))
|
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_new,size(mo_coef_new,1),R,size(R,1),(0.d0,0.d0),mo_coef_complex,size(mo_coef_complex,1))
|
||||||
|
Loading…
Reference in New Issue
Block a user