9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-07-19 01:03:25 +02:00

added README for Jastrow

This commit is contained in:
AbdAmmar 2024-01-16 00:02:25 +01:00
parent c3c65927ca
commit da7edff3b7
2 changed files with 71 additions and 3 deletions

View File

@ -1,3 +1,63 @@
# Jastrow
Information relative to the Jastrow factor in trans-correlated calculations.
Information related to the Jastrow factor in trans-correlated calculations.
The main keywords are:
- `j2e_type`
- `j1e_type`
- `env_type`
## j2e_type Options
1. **none:** No 2e-Jastrow is used.
2. **rs-dft:** 2e-Jastrow inspired by Range Separated Density Functional Theory. It has the following shape:
\begin{equation}
\tau = \frac{1}{2} \sum_{i,j \neq i} u(\mathbf{r}_i, \mathbf{r}_j),
\end{equation}
with,
\begin{equation}
u(\mathbf{r}_1, \mathbf{r}_2) = u(r_{12}) = \frac{r_{12}}{2} \left[ 1 - \text{erf}(\mu \, r_{12}) \right] - \frac{\exp\left[- (\mu \, r_{12})^2\right]}{2 \sqrt{\pi} \mu}.
\end{equation}
## env_type Options
The Jastrow used is multiplied by an envelope \(v\):
\begin{equation}
\tau = \frac{1}{2} \sum_{i,j \neq i} u(\mathbf{r}_i, \mathbf{r}_j) \, v(\mathbf{r}_i) \, v(\mathbf{r}_j)
\end{equation}
- if `env_type` is **none**: No envelope is used.
- if `env_type` is **prod-gauss**: \(v(\mathbf{r}) = \prod_{a} \left(1 - e^{-\alpha_a (\mathbf{r} - \mathbf{R}_a)^2 } \right)\)
- if `env_type` is **sum-gauss**: \(v(\mathbf{r}) = 1 - \sum_{a} \left(1 - c_a e^{-\alpha_a (\mathbf{r} - \mathbf{R}_a)^2 } \right)\)
Here, \(A\) designates the nuclei, and the coefficients and exponents are defined in the tables `enc_coef` and `env_expo` respectively.
## j1e_type Options
The Jastrow used is:
\begin{equation}
\tau = \sum_i u_{1e}(\mathbf{r}_i)
\end{equation}
- if `j1e_type` is **none**: No one-electron Jastrow is used.
- if `j1e_type` is **gauss**: We use \(u_{1e}(\mathbf{r}) = \sum_A \sum_{p_A} c_{p_A} e^{-\alpha_{p_A} (\mathbf{r} - \mathbf{R}_A)^2}\), where the \(c_p\) and \(\alpha_p\) are defined by the tables `j1e_coef` and `j1e_expo`, respectively.
- if `j1e_type` is **charge-harmonizer**: The one-electron Jastrow factor depends on the two-electron Jastrow factor \(u_{2e}\) such that the one-electron term is added to compensate for the unfavorable effect of altering the charge density caused by the two-electron factor:
\begin{equation}
u_{1e}(\mathbf{r}_1) = - \frac{N-1}{2N} \sum_{\sigma} \int d\mathbf{r}_2 \rho^{\sigma}(\mathbf{r}_2) u_{2e}(\mathbf{r}_1, \mathbf{r}_2),
\end{equation}
Feel free to review and let me know if any further adjustments are needed.

View File

@ -59,7 +59,11 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
! ---
if((j2e_type .eq. "rs-dft") .and. (env_type .eq. "none")) then
if(j2e_type .eq. "none") then
int2_grad1_u12_ao = 0.d0
elseif((j2e_type .eq. "rs-dft") .and. (env_type .eq. "none")) then
PROVIDE v_ij_erf_rk_cst_mu x_v_ij_erf_rk_cst_mu
@ -307,7 +311,11 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_p
! ---
if((j2e_type .eq. "rs-dft") .and. (env_type .eq. "none")) then
if(j2e_type .eq. "none") then
int2_grad1_u12_square_ao = 0.d0
elseif((j2e_type .eq. "rs-dft") .and. (env_type .eq. "none")) then
PROVIDE int2_grad1u2_grad2u2